Switch to: References

Citations of:

Frege versus Cantor and Dedekind: On the Concept of Number

In Matthias Schirn (ed.), Frege: Importance and Legacy. New York: De Gruyter. pp. 70-113 (1996)

Add citations

You must login to add citations.
  1. Frege, Thomae, and Formalism: Shifting Perspectives.Richard Lawrence - 2023 - Journal for the History of Analytical Philosophy 11 (2):1-23.
    Mathematical formalism is the the view that numbers are "signs" and that arithmetic is like a game played with such signs. Frege's colleague Thomae defended formalism using an analogy with chess, and Frege's critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dedekind and Wolffian Deductive Method.José Ferreirós & Abel Lassalle-Casanave - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (4):345-365.
    Dedekind’s methodology, in his classic booklet on the foundations of arithmetic, has been the topic of some debate. While some authors make it closely analogue to Hilbert’s early axiomatics, others emphasize its idiosyncratic features, most importantly the fact that no axioms are stated and its careful deductive structure apparently rests on definitions alone. In particular, the so-called Dedekind “axioms” of arithmetic are presented by him as “characteristic conditions” in the _definition_ of the complex concept of a _simply infinite_ system. Making (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Domain Extension and Ideal Elements in Mathematics†.Anna Bellomo - 2021 - Philosophia Mathematica 29 (3):366-391.
    Domain extension in mathematics occurs whenever a given mathematical domain is augmented so as to include new elements. Manders argues that the advantages of important cases of domain extension are captured by the model-theoretic notions of existential closure and model completion. In the specific case of domain extension via ideal elements, I argue, Manders’s proposed explanation does not suffice. I then develop and formalize a different approach to domain extension based on Dedekind’s Habilitationsrede, to which Manders’s account is compared. I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Dedekind's Logicism.José Ferreirós - unknown
    The place of Richard Dedekind in the history of logicism is a controversial matter. The conception of logic incorporated in his work is certainly old-fashioned, in spite of innovative elements that would play an important role in late 19th and early 20th century discussions. Yet his understanding of logic and logicism remains of interest for the light it throws upon the development of modern logic in general, and logicist views of the foundations of mathematics in particular. The paper clarifies Dedekind's (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege's natural numbers: Motivations and modifications.Erich Reck - 2005 - In Michael Beaney & Erich Reck (eds.), Gottlob Frege: Critical Assessments of Leading Philosophers, Vol. III. London: Routledge. pp. 270-301.
    Frege's main contributions to logic and the philosophy of mathematics are, on the one hand, his introduction of modern relational and quantificational logic and, on the other, his analysis of the concept of number. My focus in this paper will be on the latter, although the two are closely related, of course, in ways that will also play a role. More specifically, I will discuss Frege's logicist reconceptualization of the natural numbers with the goal of clarifying two aspects: the motivations (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structure in mathematics and logic: A categorical perspective.S. Awodey - 1996 - Philosophia Mathematica 4 (3):209-237.
    A precise notion of ‘mathematical structure’ other than that given by model theory may prove fruitful in the philosophy of mathematics. It is shown how the language and methods of category theory provide such a notion, having developed out of a structural approach in modern mathematical practice. As an example, it is then shown how the categorical notion of a topos provides a characterization of ‘logical structure’, and an alternative to the Pregean approach to logic which is continuous with the (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • The Constitution of Abstract Objects.Miroslava Trajkovski - 2019 - Theoria 87 (1):87-108.
    Theoria, Volume 87, Issue 1, Page 87-108, February 2021.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well as mathematical. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Reassessment of Cantorian Abstraction based on the $$\varepsilon $$ ε -operator.Nicola Bonatti - 2022 - Synthese 200 (5):1-26.
    Cantor’s abstractionist account of cardinal numbers has been criticized by Frege as a psychological theory of numbers which leads to contradiction. The aim of the paper is to meet these objections by proposing a reassessment of Cantor’s proposal based upon the set theoretic framework of Bourbaki—called BK—which is a First-order set theory extended with Hilbert’s \-operator. Moreover, it is argued that the BK system and the \-operator provide a faithful reconstruction of Cantor’s insights on cardinal numbers. I will introduce first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege, Dedekind, and the Origins of Logicism.Erich H. Reck - 2013 - History and Philosophy of Logic 34 (3):242-265.
    This paper has a two-fold objective: to provide a balanced, multi-faceted account of the origins of logicism; to rehabilitate Richard Dedekind as a main logicist. Logicism should be seen as more deeply rooted in the development of modern mathematics than typically assumed, and this becomes evident by reconsidering Dedekind's writings in relation to Frege's. Especially in its Dedekindian and Fregean versions, logicism constitutes the culmination of the rise of ?pure mathematics? in the nineteenth century; and this rise brought with it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Frege’s Begriffsschrift: On the Visual Basis of Logical Articulation and Understanding.Eric Dane Walker & Erich H. Reck - 2024 - History and Philosophy of Logic 45 (4):476-497.
    One of Gottlob Frege’s most original contributions to logic and philosophy was his logical notation, his ‘Begriffsschrift’. While long criticized, dismissed, or simply ignored, the recent secondary literature contains some helpful re-evaluations and partial defenses of it. These rely largely on technical, pragmatic, or cognitive-psychological considerations. In this paper, we reconsider Frege’s own reasons for valuing his notation highly. We argue that there is a further semiotic dimension, one that matters epistemologically. This dimension becomes evident once one takes seriously, partly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cantor's Abstractionism and Hume's Principle.Claudio Ternullo & Luca Zanetti - 2021 - History and Philosophy of Logic 43 (3):284-300.
    Richard Kimberly Heck and Paolo Mancosu have claimed that the possibility of non-Cantorian assignments of cardinalities to infinite concepts shows that Hume's Principle (HP) is not implicit in the concept of cardinal number. Neologicism would therefore be threatened by the ‘good company' HP is kept by such alternative assignments. In his review of Mancosu's book, Bob Hale argues, however, that ‘getting different numerosities for different countable infinite collections depends on taking the groups in a certain order – but it is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)What is the Normative Role of Logic?Peter Milne - 2009 - Aristotelian Society Supplementary Volume 83 (1):269-298.
    In making assertions one takes on commitments to the consistency of what one asserts and to the logical consequences of what one asserts. Although there is no quick link between belief and assertion, the dialectical requirements on assertion feed back into normative constraints on those beliefs that constitute one's evidence. But if we are not certain of many of our beliefs and that uncertainty is modelled in terms of probabilities, then there is at least prima facie incoherence between the normative (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Essay Review. [REVIEW][author unknown] - 2008 - History and Philosophy of Logic 29 (2):183-193.
    W. Tait, The provenance of pure reason. Essays in the philosophy of mathematics and its history. New York: Oxford University Press, 2005. ix + 332 pp. £36.50. ISBN 0-19-514192-X. Reviewed by J. W....
    Download  
     
    Export citation  
     
    Bookmark  
  • Cantor on Frege's Foundations of Arithmetic : Cantor's 1885 Review of Frege's Die Grundlagen der Arithmetik.Marcus Rossberg & Philip A. Ebert - 2009 - History and Philosophy of Logic 30 (4):341-348.
    In 1885, Georg Cantor published his review of Gottlob Frege's Grundlagen der Arithmetik . In this essay, we provide its first English translation together with an introductory note. We also provide a translation of a note by Ernst Zermelo on Cantor's review, and a new translation of Frege's brief response to Cantor. In recent years, it has become philosophical folklore that Cantor's 1885 review of Frege's Grundlagen already contained a warning to Frege. This warning is said to concern the defectiveness (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Structures and structuralism in contemporary philosophy of mathematics.Erich H. Reck & Michael P. Price - 2000 - Synthese 125 (3):341-383.
    In recent philosophy of mathematics avariety of writers have presented ``structuralist''views and arguments. There are, however, a number ofsubstantive differences in what their proponents take``structuralism'' to be. In this paper we make explicitthese differences, as well as some underlyingsimilarities and common roots. We thus identifysystematically and in detail, several main variants ofstructuralism, including some not often recognized assuch. As a result the relations between thesevariants, and between the respective problems theyface, become manifest. Throughout our focus is onsemantic and metaphysical issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • A Justification for the Quantificational Hume Principle.Chris Scambler - 2019 - Erkenntnis 86 (5):1293-1308.
    In recent work Bruno Whittle has presented a new challenge to the Cantorian idea that there are different infinite cardinalities. Most challenges of this kind have tended to focus on the status of the axioms of standard set theory; Whittle’s is different in that he focuses on the connection between standard set theory and intuitive concepts related to cardinality. Specifically, Whittle argues we are not in a position to know a principle I call the Quantificational Hume Principle, which connects the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Development of the Notion of a Cardinal Number.Oliver Deiser - 2010 - History and Philosophy of Logic 31 (2):123-143.
    We discuss the concept of a cardinal number and its history, focussing on Cantor's work and its reception. J'ay fait icy peu pres comme Euclide, qui ne pouvant pas bien >faire< entendre absolument ce que c'est que raison prise dans le sens des Geometres, definit bien ce que c'est que memes raisons. (Leibniz) 1.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dedekind’s Analysis of Number: Systems and Axioms.Wilfried Sieg & Dirk Schlimm - 2005 - Synthese 147 (1):121-170.
    Wilfred Sieg and Dirk Schlimm. Dedekind's Analysis of Number: Systems and Axioms.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Logical structuralism and Benacerraf’s problem.Audrey Yap - 2009 - Synthese 171 (1):157-173.
    There are two general questions which many views in the philosophy of mathematics can be seen as addressing: what are mathematical objects, and how do we have knowledge of them? Naturally, the answers given to these questions are linked, since whatever account we give of how we have knowledge of mathematical objects surely has to take into account what sorts of things we claim they are; conversely, whatever account we give of the nature of mathematical objects must be accompanied by (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Dedekind and Cassirer on Mathematical Concept Formation†.Audrey Yap - 2014 - Philosophia Mathematica 25 (3):369-389.
    Dedekind's major work on the foundations of arithmetic employs several techniques that have left him open to charges of psychologism, and through this, to worries about the objectivity of the natural-number concept he defines. While I accept that Dedekind takes the foundation for arithmetic to lie in certain mental powers, I will also argue that, given an appropriate philosophical background, this need not make numbers into subjective mental objects. Even though Dedekind himself did not provide that background, one can nevertheless (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation