Switch to: References

Add citations

You must login to add citations.
  1. Operators Solve the Many Categories Problem with Universals.Peter Forrest - 2018 - International Journal of Philosophical Studies 26 (5):747-762.
    ABSTRACTBy the Many Categories problem, I mean the prima facie violation of Ockham’s Razor by realists about universals: there is, it might seem, just too much variety. Thus, David Armstrong posits both properties and relations. He also theorises about determinates of determinables. Another influential realist, E. J. Lowe distinguishes non-substantial from substantial universals. Yet again, both Armstrong and Lowe include in their ontology abstract particulars in addition to universals. My aim in this paper is to offer a unification of these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why Pure Mathematical Truths Are Metaphysically Necessary: A Set-Theoretic Explanation.Hannes Leitgeb - 2020 - Synthese 197 (7):3113-3120.
    Pure mathematical truths are commonly thought to be metaphysically necessary. Assuming the truth of pure mathematics as currently pursued, and presupposing that set theory serves as a foundation of pure mathematics, this article aims to provide a metaphysical explanation of why pure mathematics is metaphysically necessary.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Schwartzkopff-Rosen Principle.Ciro De Florio & Luca Zanetti - 2020 - Philosophia 48 (1):405-419.
    Hume’s Principle states that the cardinal number of the concept F is identical with the cardinal number of G if and only if F and G can be put into one-to-one correspondence. The Schwartzkopff-Rosen Principle is a modification of HP in terms of metaphysical grounding: it states that if the number of F is identical with the number of G, then this identity is grounded by the fact that F and G can be paired one-to-one, 353–373, 2011, 362). HP is (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • I—James Ladyman: On the Identity and Diversity of Objects in a Structure.James Ladyman - 2007 - Aristotelian Society Supplementary Volume 81 (1):23-43.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • A Defence of Informational Structural Realism.Luciano Floridi - 2008 - Synthese 161 (2):219 - 253.
    This is the revised version of an invited keynote lecture delivered at the 1st Australian Computing and Philosophy Conference (CAP@AU; the Australian National University in Canberra, 31 October–2 November, 2003). The paper is divided into two parts. The first part defends an informational approach to structural realism. It does so in three steps. First, it is shown that, within the debate about structural realism (SR), epistemic (ESR) and ontic (OSR) structural realism are reconcilable. It follows that a version of OSR (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • The Structure, the Whole Structure and Nothing but the Structure?Stathis Psillos - 2006 - Philosophy of Science 73 (5):560-570.
    This paper is structured around the three elements of the title. Section 2 claims that (a) structures need objects and (b) scientific structuralism should focus on in re structures. Therefore, pure structuralism is undermined. Section 3 discusses whether the world has `excess structure' over the structure of appearances. The main point is that the claim that only structure can be known is false. Finally, Section 4 argues directly against ontic structural realism that it lacks the resources to accommodate causation within (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • The Benacerraf Problem as a Challenge for Ontic Structural Realism†.Majid Davoody Beni - 2020 - Philosophia Mathematica 28 (1):35-59.
    ABSTRACT Benacerraf has presented two problems for the philosophy of mathematics. These are the problem of identification and the problem of representation. This paper aims to reconstruct the latter problem and to unpack its undermining bearing on the version of Ontic Structural Realism that frames scientific representations in terms of abstract structures. I argue that the dichotomy between mathematical structures and physical ones cannot be used to address the Benacerraf problem but strengthens it. I conclude by arguing that versions of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Structuralism and Theism.Silvia Jonas - forthcoming - In Fiona Ellis (ed.), New Models of Religious Understanding. Oxford: Oxford University Press.
    Drawing an analogy between modal structuralism about mathematics and theism, I o er a structuralist account that implicitly de nes theism in terms of three basic relations: logical and metaphysical priority, and epis- temic superiority. On this view, statements like `God is omniscient' have a hypothetical and a categorical component. The hypothetical component provides a translation pattern according to which statements in theistic language are converted into statements of second-order modal logic. The categorical component asserts the logical possibility of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structuralism in Social Science: Obsolete or Promising?Josef Menšík - 2018 - Teorie Vědy / Theory of Science 40 (2):129-132.
    The approach of structuralism came to philosophy from social science. It was also in social science where, in 1950–1970s, in the form of the French structuralism, the approach gained its widest recognition. Since then, however, the approach fell out of favour in social science. Recently, structuralism is gaining currency in the philosophy of mathematics. After ascertaining that the two structuralisms indeed share a common core, the question stands whether general structuralism could not find its way back into social science. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Invariants and Mathematical Structuralism.Georg Schiemer - 2014 - Philosophia Mathematica 22 (1):70-107.
    The paper outlines a novel version of mathematical structuralism related to invariants. The main objective here is twofold: first, to present a formal theory of structures based on the structuralist methodology underlying work with invariants. Second, to show that the resulting framework allows one to model several typical operations in modern mathematical practice: the comparison of invariants in terms of their distinctive power, the bundling of incomparable invariants to increase their collective strength, as well as a heuristic principle related to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Epsilon-Reconstruction of Theories and Scientific Structuralism.Georg Schiemer & Norbert Gratzl - 2016 - Erkenntnis 81 (2):407-432.
    Rudolf Carnap’s mature work on the logical reconstruction of scientific theories consists of two components. The first is the elimination of the theoretical vocabulary of a theory in terms of its Ramsification. The second is the reintroduction of the theoretical terms through explicit definitions in a language containing an epsilon operator. This paper investigates Carnap’s epsilon-reconstruction of theories in the context of pure mathematics. The main objective here is twofold: first, to specify the epsilon logic underlying his suggested definition of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Naturalising Badiou: Mathematical Ontology and Structural Realism.Fabio Gironi - unknown
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Scientific Phenomena and Patterns in Data.Pascal Ströing - 2018 - Dissertation, LMU München
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction to Special Issue: Dedekind and the Philosophy of Mathematics.Erich Reck - 2017 - Philosophia Mathematica 25 (3):287-291.
    © The Author [2017]. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.comRichard Dedekind was a contemporary of Bernhard Riemann, Georg Cantor, and Gottlob Frege, among others. Together, they revolutionized mathematics and logic in the second half of the nineteenth century. Dedekind had an especially strong influence on David Hilbert, Ernst Zermelo, Emmy Noether, and Nicolas Bourbaki, who completed that revolution in the twentieth century. With respect to mainstream mathematics, he is best known for his contributions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dedekind and Cassirer on Mathematical Concept Formation†.Audrey Yap - 2017 - Philosophia Mathematica 25 (3):369-389.
    Download  
     
    Export citation  
     
    Bookmark  
  • Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Do Ante Rem Mathematical Structures Instantiate Themselves?Scott Normand - 2019 - Australasian Journal of Philosophy 97 (1):167-177.
    ABSTRACTAnte rem structuralists claim that mathematical objects are places in ante rem structural universals. They also hold that the places in these structural universals instantiate themselves. This paper is an investigation of this self-instantiation thesis. I begin by pointing out that this thesis is of central importance: unless the places of a mathematical structure, such as the places of the natural number structure, themselves instantiate the structure, they cannot have any arithmetical properties. But if places do not have arithmetical properties, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Note on the Relation Between Formal and Informal Proof.Jörgen Sjögren - 2010 - Acta Analytica 25 (4):447-458.
    Using Carnap’s concept explication, we propose a theory of concept formation in mathematics. This theory is then applied to the problem of how to understand the relation between the concepts formal proof and informal, mathematical proof.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Three Arguments Against Categorical Structuralism.Makmiller Pedroso - 2009 - Synthese 170 (1):21 - 31.
    Some mathematicians and philosophers contend that set theory plays a foundational role in mathematics. However, the development of category theory during the second half of the twentieth century has encouraged the view that this theory can provide a structuralist alternative to set-theoretical foundations. Against this tendency, criticisms have been made that category theory depends on set-theoretical notions and, because of this, category theory fails to show that set-theoretical foundations are dispensable. The goal of this paper is to show that these (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How to Define a Number? A General Epistemological Account of Simon Stevin’s Art of Defining.Jurgen Naets - 2010 - Topoi 29 (1):77-86.
    This paper explores Simon Stevin’s l’Arithmétique of 1585, where we find a novel understanding of the concept of number. I will discuss the dynamics between his practice and philosophy of mathematics, and put it in the context of his general epistemological attitude. Subsequently, I will take a close look at his justificational concerns, and at how these are reflected in his inductive, a postiori and structuralist approach to investigating the numerical field. I will argue that Stevin’s renewed conceptualisation of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Interdependence of Structure, Objects and Dependence.Steven French - 2010 - Synthese 175 (S1):89 - 109.
    According to 'Ontic Structural Realism' (OSR), physical objects—qua metaphysical entities—should be reconceptualised, or, more strongly, eliminated in favour of the relevant structures. In this paper I shall attempt to articulate the relationship between these putative objects and structures in terms of certain accounts of metaphysical dependence currently available. This will allow me to articulate the differences between the different forms of OSR and to argue in favour of the 'eliminativist' version. A useful context is provided by Floridi's account of the (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Aristotelian Realism.James Franklin - 2009 - In A. Irvine (ed.), The Philosophy of Mathematics (Handbook of the Philosophy of Science series). North-Holland Elsevier.
    Aristotelian, or non-Platonist, realism holds that mathematics is a science of the real world, just as much as biology or sociology are. Where biology studies living things and sociology studies human social relations, mathematics studies the quantitative or structural aspects of things, such as ratios, or patterns, or complexity, or numerosity, or symmetry. Let us start with an example, as Aristotelians always prefer, an example that introduces the essential themes of the Aristotelian view of mathematics. A typical mathematical truth is (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   8 citations  
  • An Aristotelian Realist Philosophy of Mathematics: Mathematics as the Science of Quantity and Stucture.James Franklin - 2014 - Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts of the physical world and (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Dedekind and Hilbert on the Foundations of the Deductive Sciences.Ansten Klev - 2011 - Review of Symbolic Logic 4 (4):645-681.
    We offer an interpretation of the words and works of Richard Dedekind and the David Hilbert of around 1900 on which they are held to entertain diverging views on the structure of a deductive science. Firstly, it is argued that Dedekind sees the beginnings of a science in concepts, whereas Hilbert sees such beginnings in axioms. Secondly, it is argued that for Dedekind, the primitive terms of a science are substantive terms whose sense is to be conveyed by elucidation, whereas (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Scientific Structuralism: On the Identity and Diversity of Objects in a Structure.James Ladyman - 2007 - Aristotelian Society Supplementary Volume 81 (1):23–43.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • A Defence of Informational Structural Realism.Luciano Floridi - 2008 - Synthese 161 (2):219-253.
    This is the revised version of an invited keynote lecture delivered at the "1st Australian Computing and Philosophy Conference". The paper is divided into two parts. The first part defends an informational approach to structural realism. It does so in three steps. First, it is shown that, within the debate about structural realism, epistemic and ontic structural realism are reconcilable. It follows that a version of OSR is defensible from a structuralist-friendly position. Second, it is argued that a version of (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Mathematical Structuralism Today.Julian C. Cole - 2010 - Philosophy Compass 5 (8):689-699.
    Two topics figure prominently in recent discussions of mathematical structuralism: challenges to the purported metaphysical insight provided by sui generis structuralism and the significance of category theory for understanding and articulating mathematical structuralism. This article presents an overview of central themes related to these topics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of Mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations