Switch to: References

Add citations

You must login to add citations.
  1. PALO: a probabilistic hill-climbing algorithm.Russell Greiner - 1996 - Artificial Intelligence 84 (1-2):177-208.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Learning hierarchical task network domains from partially observed plan traces.Hankz Hankui Zhuo, Héctor Muñoz-Avila & Qiang Yang - 2014 - Artificial Intelligence 212 (C):134-157.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A structural theory of explanation-based learning.Oren Etzioni - 1993 - Artificial Intelligence 60 (1):93-139.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Partial-order planning.Anthony Barrett & Daniel S. Weld - 1994 - Artificial Intelligence 67 (1):71-112.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Automatically generating abstractions for planning.Craig A. Knoblock - 1994 - Artificial Intelligence 68 (2):243-302.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • State space search nogood learning: Online refinement of critical-path dead-end detectors in planning.Marcel Steinmetz & Jörg Hoffmann - 2017 - Artificial Intelligence 245 (C):1-37.
    Download  
     
    Export citation  
     
    Bookmark  
  • Failure driven dynamic search control for partial order planners: an explanation based approach.Subbarao Kambhampati, Suresh Katukam & Yong Qu - 1996 - Artificial Intelligence 88 (1-2):253-315.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A unified framework for explanation-based generalization of partially ordered and partially instantiated plans.Subbarao Kambhampati & Smadar Kedar - 1994 - Artificial Intelligence 67 (1):29-70.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the relations between intelligent backtracking and failure-driven explanation-based learning in constraint satisfaction and planning.Subbarao Kambhampati - 1998 - Artificial Intelligence 105 (1-2):161-208.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Representation and Computation in Cognitive Models.Kenneth D. Forbus, Chen Liang & Irina Rabkina - 2017 - Topics in Cognitive Science 9 (3):694-718.
    One of the central issues in cognitive science is the nature of human representations. We argue that symbolic representations are essential for capturing human cognitive capabilities. We start by examining some common misconceptions found in discussions of representations and models. Next we examine evidence that symbolic representations are essential for capturing human cognitive capabilities, drawing on the analogy literature. Then we examine fundamental limitations of feature vectors and other distributed representations that, despite their recent successes on various practical problems, suggest (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rule acquisition events in the discovery of problem‐solving strategies.Kurt VanLehn - 1991 - Cognitive Science 15 (1):1-47.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Quantitative results concerning the utility of explanation-based learning.Steven Minton - 1990 - Artificial Intelligence 42 (2-3):363-391.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Computer Go: An AI oriented survey.Bruno Bouzy & Tristan Cazenave - 2001 - Artificial Intelligence 132 (1):39-103.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Syntax-directed discovery in mathematics.David S. Henley - 1995 - Erkenntnis 43 (2):241 - 259.
    It is shown how mathematical discoveries such as De Moivre's theorem can result from patterns among the symbols of existing formulae and that significant mathematical analogies are often syntactic rather than semantic, for the good reason that mathematical proofs are always syntactic, in the sense of employing only formal operations on symbols. This radically extends the Lakatos approach to mathematical discovery by allowing proof-directed concepts to generate new theorems from scratch instead of just as evolutionary modifications to some existing theorem. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Investigating production system representations for non-combinatorial match.Milind Tambe & Paul S. Rosenbloom - 1994 - Artificial Intelligence 68 (1):155-199.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Adaptation-guided retrieval: questioning the similarity assumption in reasoning.Barry Smyth & Mark T. Keane - 1998 - Artificial Intelligence 102 (2):249-293.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Knowledge-based proof planning.Erica Melis & Jörg Siekmann - 1999 - Artificial Intelligence 115 (1):65-105.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Speeding up inferences using relevance reasoning: a formalism and algorithms.Alon Y. Levy, Richard E. Fikes & Yehoshua Sagiv - 1997 - Artificial Intelligence 97 (1-2):83-136.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Probably approximately optimal satisficing strategies.Russell Greiner & Pekka Orponen - 1996 - Artificial Intelligence 82 (1-2):21-44.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Approximate planning.Matthew L. Ginsberg - 1995 - Artificial Intelligence 76 (1-2):89-123.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Embedding decision-analytic control in a learning architecture.Oren Etzioni - 1991 - Artificial Intelligence 49 (1-3):129-159.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Acquiring search-control knowledge via static analysis.Oren Etzioni - 1993 - Artificial Intelligence 62 (2):255-301.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Convention in joint activity.Richard Alterman & Andrew Garland - 2001 - Cognitive Science 25 (4):611-657.
    Conventional behaviors develop from practice for regularly occurring problems of coordination within a community of actors. Reusing and extending conventional methods for coordinating behavior is the task of everyday reasoning.The computational model presented in the paper details the emergence of convention in circumstances where there is no ruling body of knowledge developed by prior generations of actors within the community to guide behavior. The framework we assume combines social theories of cognition with human information processing models that have been developed (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Using genetic programming to learn and improve control knowledge.Ricardo Aler, Daniel Borrajo & Pedro Isasi - 2002 - Artificial Intelligence 141 (1-2):29-56.
    Download  
     
    Export citation  
     
    Bookmark