Switch to: References

Add citations

You must login to add citations.
  1. Bounds on Weak Scattering.Gerald E. Sacks - 2007 - Notre Dame Journal of Formal Logic 48 (1):5-31.
    The notion of a weakly scattered theory T is defined. T need not be scattered. For each a model of T, let sr() be the Scott rank of . Assume sr() ≤ ω\sp A \sb 1 for all a model of T. Let σ\sp T \sb 2 be the least Σ₂ admissible ordinal relative to T. If T admits effective k-splitting as defined in this paper, then θσ\cal Aθ\cal A$ a model of T.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The topological Vaught's conjecture and minimal counterexamples.Howard Becker - 1994 - Journal of Symbolic Logic 59 (3):757-784.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Classification from a computable viewpoint.Wesley Calvert & Julia F. Knight - 2006 - Bulletin of Symbolic Logic 12 (2):191-218.
    Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Scott heights of Abelian groups.Mark E. Nadel - 1994 - Journal of Symbolic Logic 59 (4):1351-1359.
    Download  
     
    Export citation  
     
    Bookmark  
  • An introduction to the Scott complexity of countable structures and a survey of recent results.Matthew Harrison-Trainor - 2022 - Bulletin of Symbolic Logic 28 (1):71-103.
    Every countable structure has a sentence of the infinitary logic $\mathcal {L}_{\omega _1 \omega }$ which characterizes that structure up to isomorphism among countable structures. Such a sentence is called a Scott sentence, and can be thought of as a description of the structure. The least complexity of a Scott sentence for a structure can be thought of as a measurement of the complexity of describing the structure. We begin with an introduction to the area, with short and simple proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The complexity of Scott sentences of scattered linear orders.Rachael Alvir & Dino Rossegger - 2020 - Journal of Symbolic Logic 85 (3):1079-1101.
    We calculate the complexity of Scott sentences of scattered linear orders. Given a countable scattered linear order L of Hausdorff rank $\alpha $ we show that it has a ${d\text {-}\Sigma _{2\alpha +1}}$ Scott sentence. It follows from results of Ash [2] that for every countable $\alpha $ there is a linear order whose optimal Scott sentence has this complexity. Therefore, our bounds are tight. We furthermore show that every Hausdorff rank 1 linear order has an optimal ${\Pi ^{\mathrm {c}}_{3}}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bounds on Scott ranks of some polish metric spaces.William Chan - 2020 - Journal of Mathematical Logic 21 (1):2150001.
    If [Formula: see text] is a proper Polish metric space and [Formula: see text] is any countable dense submetric space of [Formula: see text], then the Scott rank of [Formula: see text] in the natural first-order language of metric spaces is countable and in fact at most [Formula: see text], where [Formula: see text] is the Church–Kleene ordinal of [Formula: see text] which is the least ordinal with no presentation on [Formula: see text] computable from [Formula: see text]. If [Formula: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An admissible generalization of a theorem on countable ¹ 1 sets of reals with applications.M. Makkai - 1977 - Annals of Mathematical Logic 11 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Classes of structures with no intermediate isomorphism problems.Antonio Montalbán - 2016 - Journal of Symbolic Logic 81 (1):127-150.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Borel equivalence relations and classifications of countable models.Greg Hjorth & Alexander S. Kechris - 1996 - Annals of Pure and Applied Logic 82 (3):221-272.
    Using the theory of Borel equivalence relations we analyze the isomorphism relation on the countable models of a theory and develop a framework for measuring the complexity of possible complete invariants for isomorphism.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • An example concerning Scott heights.M. Makkai - 1981 - Journal of Symbolic Logic 46 (2):301-318.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Some dichotomy theorems for isomorphism relations of countable models.Su Gao - 2001 - Journal of Symbolic Logic 66 (2):902-922.
    Strengthening known instances of Vaught Conjecture, we prove the Glimm-Effros dichotomy theorems for countable linear orderings and for simple trees. Corollaries of the theorems answer some open questions of Friedman and Stanley in an L ω 1ω -interpretability theory. We also give a survey of this theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Model theory for< i> L_< sub>∞ ω1.Sy D. Friedman - 1984 - Annals of Pure and Applied Logic 26 (2):103-122.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Computable Trees of Scott Rank [image] , and Computable Approximation.Wesley Calvert, Julia F. Knight & Jessica Millar - 2006 - Journal of Symbolic Logic 71 (1):283 - 298.
    Makkai [10] produced an arithmetical structure of Scott rank $\omega _{1}^{\mathit{CK}}$. In [9]. Makkai's example is made computable. Here we show that there are computable trees of Scott rank $\omega _{1}^{\mathit{CK}}$. We introduce a notion of "rank homogeneity". In rank homogeneous trees, orbits of tuples can be understood relatively easily. By using these trees, we avoid the need to pass to the more complicated "group trees" of [10] and [9]. Using the same kind of trees, we obtain one of rank (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A contextual–hierarchical approach to truth and the liar paradox.Michael Glanzberg - 2004 - Journal of Philosophical Logic 33 (1):27-88.
    This paper presents an approach to truth and the Liar paradox which combines elements of context dependence and hierarchy. This approach is developed formally, using the techniques of model theory in admissible sets. Special attention is paid to showing how starting with some ideas about context drawn from linguistics and philosophy of language, we can see the Liar sentence to be context dependent. Once this context dependence is properly understood, it is argued, a hierarchical structure emerges which is neither ad (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Categoricity of computable infinitary theories.W. Calvert, S. S. Goncharov, J. F. Knight & Jessica Millar - 2009 - Archive for Mathematical Logic 48 (1):25-38.
    Computable structures of Scott rank ${\omega_1^{CK}}$ are an important boundary case for structural complexity. While every countable structure is determined, up to isomorphism, by a sentence of ${\mathcal{L}_{\omega_1 \omega}}$ , this sentence may not be computable. We give examples, in several familiar classes of structures, of computable structures with Scott rank ${\omega_1^{CK}}$ whose computable infinitary theories are each ${\aleph_0}$ -categorical. General conditions are given, covering many known methods for constructing computable structures with Scott rank ${\omega_1^{CK}}$ , which guarantee that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hanf number for Scott sentences of computable structures.S. S. Goncharov, J. F. Knight & I. Souldatos - 2018 - Archive for Mathematical Logic 57 (7-8):889-907.
    The Hanf number for a set S of sentences in \ is the least infinite cardinal \ such that for all \, if \ has models in all infinite cardinalities less than \, then it has models of all infinite cardinalities. Friedman asked what is the Hanf number for Scott sentences of computable structures. We show that the value is \. The same argument proves that \ is the Hanf number for Scott sentences of hyperarithmetical structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • Index Sets for Classes of High Rank Structures.W. Calvert, E. Fokina, S. S. Goncharov, J. F. Knight, O. Kudinov, A. S. Morozov & V. Puzarenko - 2007 - Journal of Symbolic Logic 72 (4):1418 - 1432.
    This paper calculates, in a precise way, the complexity of the index sets for three classes of computable structures: the class $K_{\omega _{1}^{\mathit{CK}}}$ of structures of Scott rank $\omega _{1}^{\mathit{CK}}$ , the class $K_{\omega _{1}^{\mathit{CK}}+1}$ of structures of Scott rank $\omega _{1}^{\mathit{CK}}+1$ , and the class K of all structures of non-computable Scott rank. We show that I(K) is m-complete $\Sigma _{1}^{1},\,I(K_{\omega _{1}^{\mathit{CK}}})$ is m-complete $\Pi _{2}^{0}$ relative to Kleen's O, and $I(K_{\omega _{1}^{\mathit{CK}}+1})$ is m-complete $\Sigma _{2}^{0}$ relative to O.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The pure part of HYP(M).Mark Nadel & Jonathan Stavi - 1977 - Journal of Symbolic Logic 42 (1):33-46.
    Let M be a structure for a language L on a set M of urelements. HYP(M) is the least admissible set above M. In § 1 we show that pp(HYP(M)) [ = the collection of pure sets in HYP(M] is determined in a simple way by the ordinal α = ⚬(HYP(M)) and the $\mathscr{L}_{\propto\omega}$ theory of M up to quantifier rank α. In § 2 we consider the question of which pure countable admissible sets are of the form pp(HYP(M)) for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some recent developments in higher recursion theory.Sy D. Friedman - 1983 - Journal of Symbolic Logic 48 (3):629-642.
    In recent years higher recursion theory has experienced a deep interaction with other areas of logic, particularly set theory (fine structure, forcing, and combinatorics) and infinitary model theory. In this paper we wish to illustrate this interaction by surveying the progress that has been made in two areas: the global theory of the κ-degrees and the study of closure ordinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Applications of Fodor's lemma to Vaught's conjecture.Mark Howard - 1989 - Annals of Pure and Applied Logic 42 (1):1-19.
    Download  
     
    Export citation  
     
    Bookmark  
  • δ-Logics and generalized quantifiers.J. A. Makowsky - 1976 - Annals of Mathematical Logic 10 (2):155-192.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Barwise: Infinitary logic and admissible sets.H. Jerome Keisler & Julia F. Knight - 2004 - Bulletin of Symbolic Logic 10 (1):4-36.
    §0. Introduction. In [16], Barwise described his graduate study at Stanford. He told of his interactions with Kreisel and Scott, and said how he chose Feferman as his advisor. He began working on admissible fragments of infinitary logic after reading and giving seminar talks on two Ph.D. theses which had recently been completed: that of Lopez-Escobar, at Berkeley, on infinitary logic [46], and that of Platek [58], at Stanford, on admissible sets.Barwise's work on infinitary logic and admissible sets is described (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Scott complexity of countable structures.Rachael Alvir, Noam Greenberg, Matthew Harrison-Trainor & Dan Turetsky - 2021 - Journal of Symbolic Logic 86 (4):1706-1720.
    We define the Scott complexity of a countable structure to be the least complexity of a Scott sentence for that structure. This is a finer notion of complexity than Scott rank: it distinguishes between whether the simplest Scott sentence is $\Sigma _{\alpha }$, $\Pi _{\alpha }$, or $\mathrm {d-}\Sigma _{\alpha }$. We give a complete classification of the possible Scott complexities, including an example of a structure whose simplest Scott sentence is $\Sigma _{\lambda + 1}$ for $\lambda $ a limit (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Model theory for "L"[infinity]omega 1.S. D. Friedman - 1984 - Annals of Pure and Applied Logic 26 (2):103.
    Download  
     
    Export citation  
     
    Bookmark  
  • Saturated structures, unions of chains, and preservation theorems.Alan Adamson - 1980 - Annals of Mathematical Logic 19 (1):67-96.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Model theory for L∞ω1.Sy D. Friedman - 1984 - Annals of Pure and Applied Logic 26 (2):103-122.
    Download  
     
    Export citation  
     
    Bookmark  
  • Why some people are excited by Vaught's conjecture.Daniel Lascar - 1985 - Journal of Symbolic Logic 50 (4):973-982.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Martin's conjecture.C. M. Wagner - 1982 - Annals of Mathematical Logic 22 (1):47.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The countable admissible ordinal equivalence relation.William Chan - 2017 - Annals of Pure and Applied Logic 168 (6):1224-1246.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Atomic models higher up.Jessica Millar & Gerald E. Sacks - 2008 - Annals of Pure and Applied Logic 155 (3):225-241.
    There exists a countable structure of Scott rank where and where the -theory of is not ω-categorical. The Scott rank of a model is the least ordinal β where the model is prime in its -theory. Most well-known models with unbounded atoms below also realize a non-principal -type; such a model that preserves the Σ1-admissibility of will have Scott rank . Makkai [M. Makkai, An example concerning Scott heights, J. Symbolic Logic 46 301–318. [4]] produces a hyperarithmetical model of Scott (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Polish group actions and effectivity.Barbara Majcher-Iwanow - 2012 - Archive for Mathematical Logic 51 (5-6):563-573.
    We extend a theorem of Barwise and Nadel describing the relationship between approximations of canonical Scott sentences and admissible sets to the case of orbit equivalence relations induced on an arbitrary Polish space by a Polish group action.
    Download  
     
    Export citation  
     
    Bookmark  
  • Isomorphism of Computable Structures and Vaught's Conjecture.Howard Becker - 2013 - Journal of Symbolic Logic 78 (4):1328-1344.
    Download  
     
    Export citation  
     
    Bookmark  
  • A boundedness principle for the Hjorth rank.Ohad Drucker - 2021 - Archive for Mathematical Logic 61 (1):223-232.
    Hjorth introduced a Scott analysis for general Polish group actions, and asked whether his notion of rank satisfies a boundedness principle similar to the one of Scott rank—namely, if the orbit equivalence relation is Borel, then Hjorth ranks are bounded. We answer Hjorth’s question positively. As a corollary we prove the following conjecture of Hjorth—for every limit ordinal \, the set of elements whose orbit is of complexity less than \ is a Borel set.
    Download  
     
    Export citation  
     
    Bookmark  
  • Polish group actions, nice topologies, and admissible sets.Barbara Majcher-Iwanow - 2008 - Mathematical Logic Quarterly 54 (6):597-616.
    Let G be a closed subgroup of S∞ and X be a Polish G -space. To every x ∈ X we associate an admissible set Ax and show how questions about X which involve Baire category can be formalized in Ax.
    Download  
     
    Export citation  
     
    Bookmark  
  • Classes of Ulm type and coding rank-homogeneous trees in other structures.E. Fokina, J. F. Knight, A. Melnikov, S. M. Quinn & C. Safranski - 2011 - Journal of Symbolic Logic 76 (3):846 - 869.
    The first main result isolates some conditions which fail for the class of graphs and hold for the class of Abelian p-groups, the class of Abelian torsion groups, and the special class of "rank-homogeneous" trees. We consider these conditions as a possible definition of what it means for a class of structures to have "Ulm type". The result says that there can be no Turing computable embedding of a class not of Ulm type into one of Ulm type. We apply (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations