Switch to: References

Add citations

You must login to add citations.
  1. Contraction, Infinitary Quantifiers, and Omega Paradoxes.Bruno Da Ré & Lucas Rosenblatt - 2018 - Journal of Philosophical Logic 47 (4):611-629.
    Our main goal is to investigate whether the infinitary rules for the quantifiers endorsed by Elia Zardini in a recent paper are plausible. First, we will argue that they are problematic in several ways, especially due to their infinitary features. Secondly, we will show that even if these worries are somehow dealt with, there is another serious issue with them. They produce a truth-theoretic paradox that does not involve the structural rules of contraction.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Necessarily Maybe. Quantifiers, Modality and Vagueness.Alessandro Torza - 2015 - In Quantifiers, Quantifiers, and Quantifiers. Themes in Logic, Metaphysics, and Language. (Synthese Library vol. 373). Springer. pp. 367-387.
    Languages involving modalities and languages involving vagueness have each been thoroughly studied. On the other hand, virtually nothing has been said about the interaction of modality and vagueness. This paper aims to start filling that gap. Section 1 is a discussion of various possible sources of vague modality. Section 2 puts forward a model theory for a quantified language with operators for modality and vagueness. The model theory is followed by a discussion of the resulting logic. In Section 3, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Contractions of noncontractive consequence relations.Rohan French & David Ripley - 2015 - Review of Symbolic Logic 8 (3):506-528.
    Some theorists have developed formal approaches to truth that depend on counterexamples to the structural rules of contraction. Here, we study such approaches, with an eye to helping them respond to a certain kind of objection. We define a contractive relative of each noncontractive relation, for use in responding to the objection in question, and we explore one example: the contractive relative of multiplicative-additive affine logic with transparent truth, or MAALT. -/- .
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Paraconsistency: Logic and Applications.Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.) - 2012 - Dordrecht, Netherland: Springer.
    A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A substructural analysis of embedded conditionals.Pilar Terrés Villalonga - 2020 - Synthese 199 (Suppl 3):571-595.
    The aim of this paper is to give a general solution to the paradoxes of the material conditional, including the paradoxes generated by embedded conditionals. The solution consists in a pragmatic reinterpretation of the formal languages of classical logic LK and relevant logic LR as presented in Paoli. In particular I argue that the material conditional in the classical logic LK captures the truth conditions of “if...then”, but ignores certain pragmatic enrichments that are associated to it, while relevant logic LR (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Constantes logiques et décision.Saloua Chatti - 2015 - Philosophia Scientiae 19:229-250.
    Dans cet article, j'analyse le problème des significations des constantes logiques. Ces significations sont-elles fixées conventionnellement comme le suggèrent Carnap et Wittgenstein, ou bien doivent-elles s'imposer à tous et ne pas dépendre de décisions préalables? Après avoir examiné le conventionnalisme de Wittgenstein et Carnap et l'anti-conventionnalisme de Peacocke selon lequel les sens des constantes logiques reposent sur des conceptions implicites, je montre que les deux thèses sont également critiquables. La première ne résiste pas à l'incohérence du connecteur « tonk », (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations