Switch to: References

Citations of:

How to be a structuralist all the way down

Synthese 179 (3):435 - 454 (2011)

Add citations

You must login to add citations.
  1. On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part A†.Hannes Leitgeb - 2020 - Philosophia Mathematica 28 (3):317-346.
    This is Part A of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A summarizes the general attractions of non-eliminative structuralism. Afterwards, it motivates an understanding of unlabeled graphs as structures sui generis and develops a corresponding axiomatic theory of unlabeled graphs. As the theory demonstrates, graph theory can be developed consistently without eliminating unlabeled graphs in favour of sets; and the usual structuralist criterion of identity can (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Structuralism in Social Science: Obsolete or Promising?Josef Menšík - 2018 - Teorie Vědy / Theory of Science 40 (2):129-132.
    The approach of structuralism came to philosophy from social science. It was also in social science where, in 1950–1970s, in the form of the French structuralism, the approach gained its widest recognition. Since then, however, the approach fell out of favour in social science. Recently, structuralism is gaining currency in the philosophy of mathematics. After ascertaining that the two structuralisms indeed share a common core, the question stands whether general structuralism could not find its way back into social science. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An ‘i’ for an i, a Truth for a Truth†.Mary Leng - 2020 - Philosophia Mathematica 28 (3):347-359.
    Stewart Shapiro’s ante rem structuralism recognizes the structural or ‘algebraic’ aspects of mathematical practice while still offering a face-value semantics. Fictionalism, as a purely ‘algebraic’ approach, is held to be at a disadvantage, as compared with Shapiro’s structuralism, in not interpreting mathematics at face value. However, the face-value reading of mathematical singular terms has difficulty explaining how we can use such terms to pick out a unique referent in cases where the relevant mathematical structures admit non-trivial automorphisms. Shapiro offers a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a unified framework for decomposability of processes.Valtteri Lahtinen & Antti Stenvall - 2017 - Synthese 194 (11):4411-4427.
    The concept of process is ubiquitous in science, engineering and everyday life. Category theory, and monoidal categories in particular, provide an abstract framework for modelling processes of many kinds. In this paper, we concentrate on sequential and parallel decomposability of processes in the framework of monoidal categories: We will give a precise definition, what it means for processes to be decomposable. Moreover, through examples, we argue that viewing parallel processes as coupled in this framework can be seen as a category (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Warum die Mathematik keine ontologische Grundlegung braucht.Simon Friederich - 2014 - Wittgenstein-Studien 5 (1).
    Einer weit verbreiteten Auffassung zufolge ist es eine zentrale Aufgabe der Philosophie der Mathematik, eine ontologische Grundlegung der Mathematik zu formulieren: eine philosophische Theorie darüber, ob mathematische Sätze wirklich wahr sind und ob mathematischen Gegenstände wirklich existieren. Der vorliegende Text entwickelt eine Sichtweise, der zufolge diese Auffassung auf einem Missverständnis beruht. Hierzu wird zunächst der Grundgedanke der Hilbert'schen axiomatischen Methode orgestellt, die Axiome als implizite Definitionen der in ihnen enthaltenen Begriffe zu behandeln. Anschließend wird in Anlehnung an einen Wittgenstein'schen Gedanken (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Invariants and Mathematical Structuralism.Georg Schiemer - 2014 - Philosophia Mathematica 22 (1):70-107.
    The paper outlines a novel version of mathematical structuralism related to invariants. The main objective here is twofold: first, to present a formal theory of structures based on the structuralist methodology underlying work with invariants. Second, to show that the resulting framework allows one to model several typical operations in modern mathematical practice: the comparison of invariants in terms of their distinctive power, the bundling of incomparable invariants to increase their collective strength, as well as a heuristic principle related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The genetic versus the axiomatic method: Responding to Feferman 1977: The genetic versus the axiomatic method: Responding to Feferman 1977.Elaine Landry - 2013 - Review of Symbolic Logic 6 (1):24-51.
    Feferman argues that category theory cannot stand on its own as a structuralist foundation for mathematics: he claims that, because the notions of operation and collection are both epistemically and logically prior, we require a background theory of operations and collections. Recently [2011], I have argued that in rationally reconstructing Hilbert’s organizational use of the axiomatic method, we can construct an algebraic version of category-theoretic structuralism. That is, in reply to Shapiro, we can be structuralists all the way down ; (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical structuralism today.Julian C. Cole - 2010 - Philosophy Compass 5 (8):689-699.
    Two topics figure prominently in recent discussions of mathematical structuralism: challenges to the purported metaphysical insight provided by sui generis structuralism and the significance of category theory for understanding and articulating mathematical structuralism. This article presents an overview of central themes related to these topics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematics: Method Without Metaphysics.Elaine Landry - 2023 - Philosophia Mathematica 31 (1):56-80.
    I use my reading of Plato to develop what I call as-ifism, the view that, in mathematics, we treat our hypotheses as if they were first principles and we do this with the purpose of solving mathematical problems. I then extend this view to modern mathematics showing that when we shift our focus from the method of philosophy to the method of mathematics, we see that an as-if methodological interpretation of mathematical structuralism can be used to provide an account of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Underdetermination as a Path to Structural Realism.Katherine Brading & Alexander Skiles - 2012 - In Elaine Landry & Dean Rickles (eds.), Structural Realism: Structure, Object, and Causality. Springer.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Category theory.Jean-Pierre Marquis - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • What is a Higher Level Set?Dimitris Tsementzis - 2016 - Philosophia Mathematica:nkw032.
    Structuralist foundations of mathematics aim for an ‘invariant’ conception of mathematics. But what should be their basic objects? Two leading answers emerge: higher groupoids or higher categories. I argue in favor of the former over the latter. First, I explain why to choose between them we need to ask the question of what is the correct ‘categorified’ version of a set. Second, I argue in favor of groupoids over categories as ‘categorified’ sets by introducing a pre-formal understanding of groupoids as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mind the Gap: Steven French: The structure of the world: Metaphysics and representation. Oxford: OUP, 2014, 416pp, ISBN: 978-0-19-968484-7, ₤50.00 HB.Elaine Landry - 2015 - Metascience 25 (2):183-188.
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific phenomena and patterns in data.Pascal Ströing - 2018 - Dissertation, Lmu München
    Download  
     
    Export citation  
     
    Bookmark  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation