Switch to: References

Add citations

You must login to add citations.
  1. Extensions of Priest-da Costa Logic.Thomas Macaulay Ferguson - 2014 - Studia Logica 102 (1):145-174.
    In this paper, we look at applying the techniques from analyzing superintuitionistic logics to extensions of the cointuitionistic Priest-da Costa logic daC (introduced by Graham Priest as “da Costa logic”). The relationship between the superintuitionistic axioms- definable in daC- and extensions of Priest-da Costa logic (sdc-logics) is analyzed and applied to exploring the gap between the maximal si-logic SmL and classical logic in the class of sdc-logics. A sequence of strengthenings of Priest-da Costa logic is examined and employed to pinpoint (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On logics with coimplication.Frank Wolter - 1998 - Journal of Philosophical Logic 27 (4):353-387.
    This paper investigates (modal) extensions of Heyting-Brouwer logic, i.e., the logic which results when the dual of implication (alias coimplication) is added to the language of intuitionistic logic. We first develop matrix as well as Kripke style semantics for those logics. Then, by extending the Gö;del-embedding of intuitionistic logic into S4, it is shown that all (modal) extensions of Heyting-Brouwer logic can be embedded into tense logics (with additional modal operators). An extension of the Blok-Esakia-Theorem is proved for this embedding.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Wansing's bi-intuitionistic logic: semantics, extension and unilateralisation.Juan C. Agudelo-Agudelo - 2024 - Journal of Applied Non-Classical Logics 34 (1):31-54.
    The well-known algebraic semantics and topological semantics for intuitionistic logic (Int) is here extended to Wansing's bi-intuitionistic logic (2Int). The logic 2Int is also characterised by a quasi-twist structure semantics, which leads to an alternative topological characterisation of 2Int. Later, notions of Fregean negation and of unilateralisation are proposed. The logic 2Int is extended with a ‘Fregean negation’ connective ∼, obtaining 2Int∼, and it is showed that the logic N4⋆ (an extension of Nelson's paraconsistent logic) results to be the unilateralisation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionistic logic versus paraconsistent logic. Categorical approach.Mariusz Kajetan Stopa - 2023 - Dissertation, Jagiellonian University
    The main research goal of the work is to study the notion of co-topos, its correctness, properties and relations with toposes. In particular, the dualization process proposed by proponents of co-toposes has been analyzed, which transforms certain Heyting algebras of toposes into co-Heyting ones, by which a kind of paraconsistent logic may appear in place of intuitionistic logic. It has been shown that if certain two definitions of topos are to be equivalent, then in one of them, in the context (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • B-frame duality.Guillaume Massas - 2023 - Annals of Pure and Applied Logic 174 (5):103245.
    This paper introduces the category of b-frames as a new tool in the study of complete lattices. B-frames can be seen as a generalization of posets, which play an important role in the representation theory of Heyting algebras, but also in the study of complete Boolean algebras in forcing. This paper combines ideas from the two traditions in order to generalize some techniques and results to the wider context of complete lattices. In particular, we lift a representation theorem of Allwein (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Polyhedral Completeness of Intermediate Logics: The Nerve Criterion.Sam Adam-day, Nick Bezhanishvili, David Gabelaia & Vincenzo Marra - 2024 - Journal of Symbolic Logic 89 (1):342-382.
    We investigate a recently devised polyhedral semantics for intermediate logics, in which formulas are interpreted in n-dimensional polyhedra. An intermediate logic is polyhedrally complete if it is complete with respect to some class of polyhedra. The first main result of this paper is a necessary and sufficient condition for the polyhedral completeness of a logic. This condition, which we call the Nerve Criterion, is expressed in terms of Alexandrov’s notion of the nerve of a poset. It affords a purely combinatorial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nelson’s logic ????Thiago Nascimento, Umberto Rivieccio, João Marcos & Matthew Spinks - 2020 - Logic Journal of the IGPL 28 (6):1182-1206.
    Besides the better-known Nelson logic and paraconsistent Nelson logic, in 1959 David Nelson introduced, with motivations of realizability and constructibility, a logic called $\mathcal{S}$. The logic $\mathcal{S}$ was originally presented by means of a calculus with infinitely many rule schemata and no semantics. We look here at the propositional fragment of $\mathcal{S}$, showing that it is algebraizable, in the sense of Blok and Pigozzi, with respect to a variety of three-potent involutive residuated lattices. We thus introduce the first known algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Applications of Kripke models to Heyting-Brouwer logic.Cecylia Rauszer - 1977 - Studia Logica 36 (1-2):61 - 71.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Involutive symmetric Gödel spaces, their algebraic duals and logic.A. Di Nola, R. Grigolia & G. Vitale - 2023 - Archive for Mathematical Logic 62 (5):789-809.
    It is introduced a new algebra$$(A, \otimes, \oplus, *, \rightharpoonup, 0, 1)$$(A,⊗,⊕,∗,⇀,0,1)called$$L_PG$$LPG-algebra if$$(A, \otimes, \oplus, *, 0, 1)$$(A,⊗,⊕,∗,0,1)is$$L_P$$LP-algebra (i.e. an algebra from the variety generated by perfectMV-algebras) and$$(A,\rightharpoonup, 0, 1)$$(A,⇀,0,1)is a Gödel algebra (i.e. Heyting algebra satisfying the identity$$(x \rightharpoonup y ) \vee (y \rightharpoonup x ) =1)$$(x⇀y)∨(y⇀x)=1). The lattice of congruences of an$$L_PG$$LPG-algebra$$(A, \otimes, \oplus, *, \rightharpoonup, 0, 1)$$(A,⊗,⊕,∗,⇀,0,1)is isomorphic to the lattice of Skolem filters (i.e. special type ofMV-filters) of theMV-algebra$$(A, \otimes, \oplus, *, 0, 1)$$(A,⊗,⊕,∗,0,1). The variety$$\mathbf {L_PG}$$LPGof$$L_PG$$LPG-algebras (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiom (cc0) and Verifiability in Two Extracanonical Logics of Formal Inconsistency.Thomas Macaulay Ferguson - 2018 - Principia: An International Journal of Epistemology 22 (1):113-138.
    In the field of logics of formal inconsistency, the notion of “consistency” is frequently too broad to draw decisive conclusions with respect to the validity of many theses involving the consistency connective. In this paper, we consider the matter of the axiom 0—i.e., the schema ◦ ◦ϕ—by considering its interpretation in contexts in which “consistency” is understood as a type of verifiability. This paper suggests that such an interpretation is implicit in two extracanonical LFIs—Sören Halldén’s nonsense-logic C and Graham Priest’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Semantical investigations on non-classical logics with recovery operators: negation.David Fuenmayor - forthcoming - Logic Journal of the IGPL.
    We investigate mathematical structures that provide natural semantics for families of (quantified) non-classical logics featuring special unary connectives, known as recovery operators, that allow us to ‘recover’ the properties of classical logic in a controlled manner. These structures are known as topological Boolean algebras, which are Boolean algebras extended with additional operations subject to specific conditions of a topological nature. In this study, we focus on the paradigmatic case of negation. We demonstrate how these algebras are well-suited to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Natural deduction for bi-intuitionistic logic.Luca Tranchini - 2017 - Journal of Applied Logic 25:S72-S96.
    We present a multiple-assumption multiple-conclusion system for bi-intuitionistic logic. Derivations in the systems are graphs whose edges are labelled by formulas and whose nodes are labelled by rules. We show how to embed both the standard intuitionistic and dual-intuitionistic natural deduction systems into the proposed system. Soundness and completeness are established using translations with more traditional sequent calculi for bi-intuitionistic logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Analytic Cut and Interpolation for Bi-Intuitionistic Logic.Tomasz Kowalski & Hiroakira Ono - 2017 - Review of Symbolic Logic 10 (2):259-283.
    We prove that certain natural sequent systems for bi-intuitionistic logic have the analytic cut property. In the process we show that the (global) subformula property implies the (local) analytic cut property, thereby demonstrating their equivalence. Applying a version of Maehara technique modified in several ways, we prove that bi-intuitionistic logic enjoys the classical Craig interpolation property and Maximova variable separation property; its Halldén completeness follows.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A deductive-reductive form of logic: General theory and intuitionistic case.Piotr Łukowski - 2002 - Logic and Logical Philosophy 10:59.
    The paper deals with reconstruction of the unique reductivecounterpart of the deductive logic. The procedure results in the deductivereductive form of logic. This extension is illustrated on the base of intuitionistic logics: Heyting’s, Brouwerian and Heyting-Brouwer’s ones.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Nearly every normal modal logic is paranormal.Joao Marcos - 2005 - Logique Et Analyse 48 (189-192):279-300.
    An overcomplete logic is a logic that ‘ceases to make the difference’: According to such a logic, all inferences hold independently of the nature of the statements involved. A negation-inconsistent logic is a logic having at least one model that satisfies both some statement and its negation. A negation-incomplete logic has at least one model according to which neither some statement nor its negation are satisfied. Paraconsistent logics are negation-inconsistent yet non-overcomplete; paracomplete logics are negation-incomplete yet non-overcomplete. A paranormal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Dual Intuitionistic Logic and a Variety of Negations: The Logic of Scientific Research.Yaroslav Shramko - 2005 - Studia Logica 80 (2-3):347-367.
    We consider a logic which is semantically dual (in some precise sense of the term) to intuitionistic. This logic can be labeled as “falsification logic”: it embodies the Popperian methodology of scientific discovery. Whereas intuitionistic logic deals with constructive truth and non-constructive falsity, and Nelson's logic takes both truth and falsity as constructive notions, in the falsification logic truth is essentially non-constructive as opposed to falsity that is conceived constructively. We also briefly clarify the relationships of our falsification logic to (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Discrete Dualities for Double Stone Algebras.Ivo Düntsch & Ewa Orłowska - 2011 - Studia Logica 99 (1-3):127-142.
    We present two discrete dualities for double Stone algebras. Each of these dualities involves a different class of frames and a different definition of a complex algebra. We discuss relationships between these classes of frames and show that one of them is a weakening of the other. We propose a logic based on double Stone algebras.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A "Distributive" or a "Collective" Approach to Sentences?Piotr Łukowski - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Fuzzy modal-like approximation operators based on double residuated lattices.Anna Maria Radzikowska - 2006 - Journal of Applied Non-Classical Logics 16 (3-4):485-506.
    In many applications we have a set of objects together with their properties. Since the available information is usually incomplete and/or imprecise, the true knowledge about subsets of objects can be determined approximately only. In this paper, we discuss a fuzzy generalisation of two pairs of relation-based operators suitable for fuzzy set approximations, which have been recently investigated by Düntsch and Gediga. Double residuated lattices, introduced by Orlowska and Radzikowska, are taken as basic algebraic structures. Main properties of these operators (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A modal translation for dual-intuitionistic logic.Yaroslav Shramko - 2016 - Review of Symbolic Logic 9 (2):251-265.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The pleasures of anticipation: Enriching intuitionistic logic. [REVIEW]Lloyd Humberstone - 2001 - Journal of Philosophical Logic 30 (5):395-438.
    We explore a relation we call 'anticipation' between formulas, where A anticipates B (according to some logic) just in case B is a consequence (according to that logic, presumed to support some distinguished implicational connective →) of the formula A → B. We are especially interested in the case in which the logic is intuitionistic (propositional) logic and are much concerned with an extension of that logic with a new connective, written as "a", governed by rules which guarantee that for (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the validity of the definition of a complement-classifier.Mariusz Stopa - 2020 - Philosophical Problems in Science 69:111-128.
    It is well-established that topos theory is inherently connected with intuitionistic logic. In recent times several works appeared concerning so-called complement-toposes, which are allegedly connected to the dual to intuitionistic logic. In this paper I present this new notion, some of the motivations for it, and some of its consequences. Then, I argue that, assuming equivalence of certain two definitions of a topos, the concept of a complement-classifier is, at least in general and within the conceptual framework of category theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bi-intermediate logics of trees and co-trees.Nick Bezhanishvili, Miguel Martins & Tommaso Moraschini - 2024 - Annals of Pure and Applied Logic 175 (10):103490.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Relational logics and their applications.Joanna Golinska-Pilarek & Ewa Orlowska - 2006 - In Harrie de Swart, Ewa Orlowska, Gunther Smith & Marc Roubens (eds.), Theory and Applications of Relational Structures as Knowledge Instruments II: International Workshops of COST Action 274, TARSKI, 2002-2005, Selected Revised Papers. Springer. pp. 125--161.
    Logics of binary relations corresponding, among others, to the class RRA of representable relation algebras and the class FRA of full relation algebras are presented together with the proof systems in the style of dual tableaux. Next, the logics are extended with relational constants interpreted as point relations. Applications of these logics to reasoning in non-classical logics are recalled. An example is given of a dual tableau proof of an equation which is RRA-valid, while not RA-valid.
    Download  
     
    Export citation  
     
    Bookmark   1 citation