Switch to: References

Citations of:

The interpretation of gauge symmetry

In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 124--139 (2002)

Add citations

You must login to add citations.
  1. Gauge Pressure. [REVIEW]Dean Rickles, Chris Smeenk, Holger Lyre & Richard Healey - 2009 - Metascience 18 (1):5-41.
    Symposium review of Richard Healey, Gauging What’s Real: The Conceptual Foundations of Contemporary Gauge Theories. Oxford: Oxford University Press, 2007. Pp. 297. $99.00 HB.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gauge symmetry breaking in gauge theories—in search of clarification.Simon Friederich - 2013 - European Journal for Philosophy of Science 3 (2):157-182.
    The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by our leading theoretical frameworks of gauge quantum theories. In the context of lattice gauge theory, the statement that local gauge symmetry cannot be spontaneously broken can even be made rigorous in the form of Elitzur’s theorem. (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Symplectic Reduction and the Problem of Time in Nonrelativistic Mechanics.Karim P. Y. Thébault - 2012 - British Journal for the Philosophy of Science 63 (4):789-824.
    Symplectic reduction is a formal process through which degeneracy within the mathematical representations of physical systems displaying gauge symmetry can be controlled via the construction of a reduced phase space. Typically such reduced spaces provide us with a formalism for representing both instantaneous states and evolution uniquely and for this reason can be justifiably afforded the status of fun- damental dynamical arena - the otiose structure having been eliminated from the original phase space. Essential to the application of symplectic reduction (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Time and Structure in Canonical Gravity.Dean Rickles - 2006 - In Dean Rickles, Steven French & Juha T. Saatsi (eds.), The Structural Foundations of Quantum Gravity. Oxford, GB: Oxford University Press.
    In this paper I wish to make some headway on understanding what \emph{kind} of problem the ``problem of time'' is, and offer a possible resolution---or, rather, a new way of understanding an old resolution. The response I give is a variation on a theme of Rovelli's \emph{evolving constants of motion} strategy. I argue that by giving correlation strategies a \emph{structuralist} basis, a number of objections to the standard account can be blunted. Moreover, I show that the account I offer provides (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The principles of gauging.Holger Lyre - 2001 - Philosophy of Science 68 (3):S371-S381.
    The aim of this paper is twofold: First, to present an examination of the principles underlying gauge field theories. I shall argue that there are two principles directly connected to the two well-known theorems of Emmy Noether concerning global and local symmetries of the free matter-field Lagrangian, in the following referred to as "conservation principle" and "gauge principle". Since both these express nothing but certain symmetry features of the free field theory, they are not sufficient to derive a true interaction (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Symmetry and gauge freedom.Gordon Belot - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (2):189-225.
    The classical field theories that underlie the quantum treatments of the electromagnetic, weak, and strong forces share a peculiar feature: specifying the initial state of the field determines the evolution of some degrees of freedom of the theory while leaving the evolution of some others wholly arbitrary. This strongly suggests that some of the variables of the standard state space lack physical content-intuitively, the space of states of such a theory is of higher dimension than the corresponding space of genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Wait, Why Gauge?Sébastien Rivat - forthcoming - British Journal for the Philosophy of Science.
    Philosophers of physics have spent much effort unpacking the structure of gauge theories. But surprisingly, little attention has been devoted to the question of why we should require our best theories to be locally gauge invariant in the first place. Drawing on Steven Weinberg's works in the mid-1960s, I argue that the principle of local gauge invariance follows from Lorentz invariance and other natural assumptions in the context of perturbative relativistic quantum field theory. On this view, gauge freedom is a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Ontology of Quantum Field Theory: Structural Realism Vindicated?David Glick - 2016 - Studies in History and Philosophy of Science Part A 59:78-86.
    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Implementation, Interpretation, and Justification of Likelihoods in Cosmology.C. D. McCoy - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:19-35.
    I discuss the formal implementation, interpretation, and justification of likelihood attributions in cosmology. I show that likelihood arguments in cosmology suffer from significant conceptual and formal problems that undermine their applicability in this context.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fundamentality, Effectiveness, and Objectivity of Gauge Symmetries.Aldo Filomeno - 2016 - International Studies in the Philosophy of Science 30 (1):19-37.
    Much recent philosophy of physics has investigated the process of symmetry breaking. Here, I critically assess the alleged symmetry restoration at the fundamental scale. I draw attention to the contingency that gauge symmetries exhibit, that is, the fact that they have been chosen from an infinite space of possibilities. I appeal to this feature of group theory to argue that any metaphysical account of fundamental laws that expects symmetry restoration up to the fundamental level is not fully satisfactory. This is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Projection, symmetry, and natural kinds.Benjamin C. Jantzen - 2015 - Synthese 192 (11):3617-3646.
    Scientific practice involves two kinds of induction. In one, generalizations are drawn about the states of a particular system of variables. In the other, generalizations are drawn across systems in a class. We can discern two questions of correctness about both kinds of induction: what distinguishes those systems and classes of system that are ‘projectible’ in Goodman’s sense from those that are not, and what are the methods by which we are able to identify kinds that are likely to be (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Symmetry, Empirical Equivalence, and Identity.Simon Friederich - 2015 - British Journal for the Philosophy of Science 66 (3):537-559.
    The article proposes a novel approach to the much discussed question of which symmetries have ‘direct empirical significance’ and which do not. The approach is based on a development of a recently proposed framework by Hilary Greaves and David Wallace, who claim that, contrary to the standard folklore among philosophers of physics, ‘local’ symmetries may have direct empirical significance no less than ‘global’ ones. Partly vindicating the standard folklore, a result is derived here from a number of plausible assumptions, that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The interpretation of string dualities.Dean Rickles - unknown
    Many of the advances in string theory have been generated by the discovery of new duality symmetries connecting what were once thought to be distinct theories, solu- tions, processes, backgrounds, and more. Indeed, duality has played an enormously important role in the creation and development of numerous theories in physics and numerous fields of mathematics. Dualities often lie at those fruitful intersections at which mathematics and physics are especially strongly intertwined. In this paper I describe some of these dualities and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Holism and structuralism in U(1) gauge theory.Holger Lyre - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (4):643-670.
    After decades of neglect philosophers of physics have discovered gauge theories--arguably the paradigm of modern field physics--as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism--in the eyes of its proponents the best suited realist position towards modern physics--has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories--in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • The arbitrariness of local gauge symmetry.Alexandre Guay - 2004
    This paper shows how the study of surpluses of structure is an interesting philosophical task. In particular I explore how local gauge symmetry in quantized Yang-Mills theories is the by-product of the specific dynamical structure of interaction. It is shown how in non relativistic quantum mechanics gauge symmetry corresponds to the freedom to locally define global features of gauge potentials. Also discussed is how in quantum field theory local gauge symmetry is replaced by BRST symmetry. This last symmetry is apparently (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Symmetries in Physics: Philosophical Reflections.Katherine Brading & Elena Castellani (eds.) - 2002 - New York: Cambridge University Press.
    Highlighting main issues and controversies, this book brings together current philosophical discussions of symmetry in physics to provide an introduction to the subject for physicists and philosophers. The contributors cover all the fundamental symmetries of modern physics, such as CPT and permutation symmetry, as well as discussing symmetry-breaking and general interpretational issues. Classic texts are followed by new review articles and shorter commentaries for each topic. Suitable for courses on the foundations of physics, philosophy of physics and philosophy of science, (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The representation of time and change in mechanics.Gordon Belot - 2006 - In Jeremy Butterfield & John Earman (eds.), Philosophy of Physics. Amsterdam and Boston: Elsevier. pp. 133--227.
    This chapter is concerned with the representation of time and change in classical (i.e., non-quantum) physical theories. One of the main goals of the chapter is to attempt to clarify the nature and scope of the so-called problem of time: a knot of technical and interpretative problems that appear to stand in the way of attempts to quantize general relativity, and which have their roots in the general covariance of that theory. The most natural approach to these questions is via (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Are gauge symmetry transformations observable?Katherine Brading & Harvey R. Brown - 2004 - British Journal for the Philosophy of Science 55 (4):645-665.
    In a recent paper in this journal, Kosso ([2000]) discussed the observational status of continuous symmetries of physics. While we are in broad agreement with his approach, we disagree with his analysis. In the discussion of the status of gauge symmetry, a set of examples offered by 't Hooft ([1980]) has influenced several philosophers, including Kosso; in all cases the interpretation of the examples is mistaken. In this paper, we present our preferred approach to the empirical significance of symmetries, re-analysing (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Lagrangian possibilities.Alexandre Guay & Quentin Ruyant - 2024 - Synthese 203 (4):1-22.
    Natural modalities are often analysed from an abstract point of view where they are associated with putative laws of nature. However, the way possibilities are represented in physics is more complex. Lagrangian mechanics, for instance, involves two different layers of modalities: kinematical and dynamical possibilities. This paper examines the status of these two layers, both in the classical and quantum case. The quantum case is particularly problematic: we identify four possible interpretive options. The upshot is that a close inspection of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reversing the arrow of time.Bryan W. Roberts - 2022 - Cambridge: Cambridge University Press.
    'The arrow of time' refers to the curious asymmetry that distinguishes the future from the past. Reversing the Arrow of Time argues that there is an intimate link between the symmetries of 'time itself' and time reversal symmetry in physical theories, which has wide-ranging implications for both physics and its philosophy. This link helps to clarify how we can learn about the symmetries of our world, how to understand the relationship between symmetries and what is real, and how to overcome (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches.Philipp Berghofer, Jordan François, Simon Friederich, Henrique Gomes, Guy Hetzroni, Axel Maas & René Sondenheimer - 2023 - Cambridge University Press.
    Gauge symmetries play a central role, both in the mathematical foundations as well as the conceptual construction of modern (particle) physics theories. However, it is yet unclear whether they form a necessary component of theories, or whether they can be eliminated. It is also unclear whether they are merely an auxiliary tool to simplify (and possibly localize) calculations or whether they contain independent information. Therefore their status, both in physics and philosophy of physics, remains to be fully clarified. In this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gauge and Ghosts.Guy Hetzroni - 2021 - British Journal for the Philosophy of Science 72 (3):773-796.
    This article suggests a fresh look at gauge symmetries, with the aim of drawing a clear line between the a priori theoretical considerations involved, and some methodological and empirical non-deductive aspects that are often overlooked. The gauge argument is primarily based on a general symmetry principle expressing the idea that a change of mathematical representation should not change the form of the dynamical law. In addition, the ampliative part of the argument is based on the introduction of new degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Status of Scaling Limits as Approximations in Quantum Theories.Benjamin Feintzeig - unknown
    This paper attempts to make sense of a notion of ``approximation on certain scales'' in physical theories. I use this notion to understand the classical limit of ordinary quantum mechanics as a kind of scaling limit, showing that the mathematical tools of strict quantization allow one to make the notion of approximation precise. I then compare this example with the scaling limits involved in renormalization procedures for effective field theories. I argue that one does not yet have the mathematical tools (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Symmetries and the identity of physical states.Simon Friederich - 2016 - EPSA15 Selected Papers 5.
    The paper proposes a combined account of identity for physical states and direct empirical significance for symmetries according to which symmetry-related state variables designate distinct physical states if and only if the symmetry that relates them has direct empirical significance. Strengthening an earlier result, I show that, given this combined account, the local gauge symmetries in our leading contemporary theories of particle physics do not have any direct empirical significance.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empirical equivalence, artificial gauge freedom and a generalized kretschmann objection.J. Brian Pitts - unknown
    Einstein considered general covariance to characterize the novelty of his General Theory of Relativity (GTR), but Kretschmann thought it merely a formal feature that any theory could have. The claim that GTR is ``already parametrized'' suggests analyzing substantive general covariance as formal general covariance achieved without hiding preferred coordinates as scalar ``clock fields,'' much as Einstein construed general covariance as the lack of preferred coordinates. Physicists often install gauge symmetries artificially with additional fields, as in the transition from Proca's to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Symmetry & possibility: To reduce or not reduce?Dean Rickles - unknown
    In this paper I examine the connection between symmetry and modality from the perspective of `reduction' methods in geometric mechanics. I begin by setting the problem up as a choice between two opposing views: reduction and non-reduction. I then discern four views on the matter in the literature; they are distinguished by their advocation of distinct geometric spaces as representing `reality'. I come down in favour of non-reductive methods.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relativity and Equivalence in Hilbert Space: A Principle-Theory Approach to the Aharonov–Bohm Effect.Guy Hetzroni - 2020 - Foundations of Physics 50 (2):120-135.
    This paper formulates generalized versions of the general principle of relativity and of the principle of equivalence that can be applied to general abstract spaces. It is shown that when the principles are applied to the Hilbert space of a quantum particle, its law of coupling to electromagnetic fields is obtained. It is suggested to understand the Aharonov-Bohm effect in light of these principles, and the implications for some related foundational controversies are discussed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why surplus structure is not superfluous.Nguyen James, J. Teh Nicholas & Wells Laura - 2018 - British Journal for the Philosophy of Science 71 (2):665-695.
    The idea that gauge theory has `surplus' structure poses a puzzle: in one much discussed sense, this structure is redundant; but on the other hand, it is also widely held to play an essential role in the theory. In this paper, we employ category-theoretic tools to illuminate an aspect of this puzzle. We precisify what is meant by `surplus' structure by means of functorial comparisons with equivalence classes of gauge fields, and then show that such structure is essential for any (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Understanding Gauge.James Owen Weatherall - 2015 - Philosophy of Science 83 (5):1039-1049.
    I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Geometric foundations of classical yang–mills theory.Gabriel Catren - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):511-531.
    We analyze the geometric foundations of classical Yang-Mills theory by studying the relationships between internal relativity, locality, global/local invariance, and background independence. We argue that internal relativity and background independence are the two independent defining principles of Yang-Mills theory. We show that local gauge invariance -heuristically implemented by means of the gauge argument- is a direct consequence of internal relativity. Finally, we analyze the conceptual meaning of BRST symmetry in terms of the invariance of the gauge fixed theory under general (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Dual theories: ‘Same but different’ or ‘different but same’?Dean Rickles - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 59:62-67.
    I argue that, under the glitz, dual theories are examples of theoretically equivalent descriptions of the same underlying physical content: I distinguish them from cases of genuine underdetermination on the grounds that there is no real incompatibility involved between the descriptions. The incompatibility is at the level of unphysical structure. I argue that dual pairs are in fact very strongly analogous to gauge- related solutions even for dual pairs that look the most radically distinct, such as AdS/CFT.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Comparing the structures of mathematical objects.Isaac Wilhelm - 2021 - Synthese 199 (3-4):6357-6369.
    A popular method for comparing the structures of mathematical objects, which I call the ‘subset approach’, says that X has more structure than Y just in case X’s automorphisms form a proper subset of Y’s automorphisms. This approach is attractive, in part, because it seems to yield the right results in some comparisons of spacetime structure. But as I show, it yields the wrong results in a number of other cases. The problem is that the subset approach compares structure using (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Surplus structure from the standpoint of transcendental idealism: The "world geometries" of Weyl and Eddington.Thomas A. Ryckman - 2003 - Perspectives on Science 11 (1):76-106.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Is structural underdetermination possible?Holger Lyre - 2011 - Synthese 180 (2):235 - 247.
    Structural realism is sometimes said to undermine the theory underdetermination (TUD) argument against realism, since, in usual TUD scenarios, the supposed underdetermination concerns the object-like theoretical content but not the structural content. The paper explores the possibility of structural TUD by considering some special cases from modern physics, but also questions the validity of the TUD argument itself. The upshot is that cases of structural TUD cannot be excluded, but that TUD is perhaps not such a terribly serious anti-realistic argument.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Gauge theories and holisms.Richard Healey - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (4):619-642.
    Those looking for holism in contemporary physics have focused their attention primarily on quantum entanglement. But some gauge theories arguably also manifest the related phenomenon of nonseparability. While the argument is strong for the classical gauge theory describing electromagnetic interactions with quantum “particles”, it fails in the case of general relativity even though that theory may also be formulated in terms of a connection on a principal fiber bundle. Anandan has highlighted the key difference in his analysis of a supposed (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A partial elucidation of the gauge principle.Alexandre Guay - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):346-363.
    The elucidation of the gauge principle ‘‘is the most pressing problem in current philosophy of physics’’ said Michael Redhead in 2003. This paper argues for two points that contribute to this elucidation in the context of Yang–Mills theories. (1) Yang–Mills theories, including quantum electrodynamics, form a class. They should be interpreted together. To focus on electrodynamics is potentially misleading. (2) The essential role of gauge and BRST symmetries is to provide a local field theory that can be quantized and would (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Symmetry, Ontology and the Problem of Time: On the Interpretation and Quantisation of Canonical Gravity.Karim P. Y. Thebault - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why Yang-Mills theories?Alexandre Guay - 2006
    The elucidation of the gauge principle ``is the most pressing problem in current philosophy of physics" Redhead. This paper argues two points that contribute to this elucidation in the context of Yang-Mills theories. 1) Yang-Mills theories, including quantum electrodynamics, form a class. They should be interpreted together. To focus on electrodynamics is a mistake. 2) The essential role of gauge and BRST surplus is to provide a local theory that can be quantized and would be equivalent to the quantization of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Geometrical aspects of local gauge symmetry.Alexandre Guay - 2004
    This paper is an analysis of the geometrical interpretation of local gauge symmetry for theories of the Yang-Mills type.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A versus b! Topological nonseparability and the Aharonov-Bohm effect.Tim Oliver Eynck, Holger Lyre & Nicolai von Rummell - 2001
    Since its discovery in 1959 the Aharonov-Bohm effect has continuously been the cause for controversial discussions of various topics in modern physics, e.g. the reality of gauge potentials, topological effects and nonlocalities. In the present paper we juxtapose the two rival interpretations of the Aharonov-Bohm effect. We show that the conception of nonlocality encountered in the Aharonov-Bohm effect is closely related to the nonseparability which is common in quantum mechanics albeit distinct from it due to its topological nature. We propose (...)
    Download  
     
    Export citation  
     
    Bookmark