Switch to: References

Add citations

You must login to add citations.
  1. On artifacts and works of art.Risto Hilpinen - 1992 - Theoria 58 (1):58-82.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • The impossibility of relations between non-collocated spatial objects and non-identical topological spaces.Jeffrey Grupp - 2005 - Axiomathes 15 (1):85-141.
    I argue that relations between non-collocated spatial entities, between non-identical topological spaces, and between non-identical basic building blocks of space, do not exist. If any spatially located entities are not at the same spatial location, or if any topological spaces or basic building blocks of space are non-identical, I will argue that there are no relations between or among them. The arguments I present are arguments that I have not seen in the literature.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Mathematical Explanation: A Pythagorean Proposal.Sam Baron - 2024 - British Journal for the Philosophy of Science 75 (3):663-685.
    Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to provide an account of how mathematical explanations work. I propose a property-based account: physical systems possess mathematical properties, which either guarantee the presence of other mathematical properties and, by extension, the physical states that possess them; or rule out other mathematical properties, and their associated physical states. I explain why Platonists (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The ‘Space’ at the Intersection of Platonism and Nominalism.Edward Slowik - 2015 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 46 (2):393-408.
    This essay explores the use of platonist and nominalist concepts, derived from the philosophy of mathematics and metaphysics, as a means of elucidating the debate on spacetime ontology and the spatial structures endorsed by scientific realists. Although the disputes associated with platonism and nominalism often mirror the complexities involved with substantivalism and relationism, it will be argued that a more refined three-part distinction among platonist/nominalist categories can nonetheless provide unique insights into the core assumptions that underlie spatial ontologies, but it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical nominalism and measurement.Davide Rizza - 2010 - Philosophia Mathematica 18 (1):53-73.
    In this paper I defend mathematical nominalism by arguing that any reasonable account of scientific theories and scientific practice must make explicit the empirical non-mathematical grounds on which the application of mathematics is based. Once this is done, references to mathematical entities may be eliminated or explained away in terms of underlying empirical conditions. I provide evidence for this conclusion by presenting a detailed study of the applicability of mathematics to measurement. This study shows that mathematical nominalism may be regarded (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Apriority, Necessity and the Subordinate Role of Empirical Warrant in Mathematical Knowledge.Mark McEvoy - 2018 - Theoria 84 (2):157-178.
    In this article, I present a novel account of a priori warrant, which I then use to examine the relationship between a priori and a posteriori warrant in mathematics. According to this account of a priori warrant, the reason that a posteriori warrant is subordinate to a priori warrant in mathematics is because processes that produce a priori warrant are reliable independent of the contexts in which they are used, whereas this is not true for processes that produce a posteriori (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Consequence for Nominalists.Marcus Rossberg & Daniel Cohnitz - 2009 - Theoria 24 (2):147-168.
    It is often claimed that nominalistic programmes to reconstruct mathematics fail, since they will at some point involve the notion of logical consequence which is unavailable to the nominalist. In this paper we use an idea of Goodman and Quine to develop a nominalistically acceptable explication of logical consequence.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Grounding and the indispensability argument.David Liggins - 2016 - Synthese 193 (2):531-548.
    There has been much discussion of the indispensability argument for the existence of mathematical objects. In this paper I reconsider the debate by using the notion of grounding, or non-causal dependence. First of all, I investigate what proponents of the indispensability argument should say about the grounding of relations between physical objects and mathematical ones. This reveals some resources which nominalists are entitled to use. Making use of these resources, I present a neglected but promising response to the indispensability argument—a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ontology and logic: remarks on hartry field's anti-platonist philosophy of mathematics.Michael D. Resnik - 1985 - History and Philosophy of Logic 6 (1):191-209.
    In Science without numbers Hartry Field attempted to formulate a nominalist version of Newtonian physics?one free of ontic commitment to numbers, functions or sets?sufficiently strong to have the standard platonist version as a conservative extension. However, when uses for abstract entities kept popping up like hydra heads, Field enriched his logic to avoid them. This paper reviews some of Field's attempts to deflate his ontology by inflating his logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structures, fictions, and the explanatory epistemology of mathematics in science: Christopher Pincock: Mathematics and scientific representation. New York: Oxford University Press, 2012, 330pp, $65.00 HB.Mark Balaguer, Elaine Landry, Sorin Bangu & Christopher Pincock - 2013 - Metascience 22 (2):247-273.
    Critical notice of C. Pincock's Mathematics and Scientific Representation (2012).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extending Hartry field's instrumental account of applied mathematics to statistical mechanics.Glen Meyer - 2009 - Philosophia Mathematica 17 (3):273-312.
    A serious flaw in Hartry Field’s instrumental account of applied mathematics, namely that Field must overestimate the extent to which many of the structures of our mathematical theories are reflected in the physical world, underlies much of the criticism of this account. After reviewing some of this criticism, I illustrate through an examination of the prospects for extending Field’s account to classical equilibrium statistical mechanics how this flaw will prevent any significant extension of this account beyond field theories. I note (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Platonism in metaphysics.Mark Balaguer - 2008 - Stanford Encyclopedia of Philosophy.
    Platonism is the view that there exist such things as abstract objects — where an abstract object is an object that does not exist in space or time and which is therefore entirely non-physical and nonmental. Platonism in this sense is a contemporary view. It is obviously related to the views of Plato in important ways, but it is not entirely clear that Plato endorsed this view, as it is defined here. In order to remain neutral on this question, the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)The roots of contemporary Platonism.Penelope Maddy - 1989 - Journal of Symbolic Logic 54 (4):1121-1144.
    Though many working mathematicians embrace a rough and ready form of Platonism, that venerable position has suffered a checkered philosophical career. Indeed the three schools of thought with which most of us began our official philosophizing about mathematics—Intuitionism, Formalism, and Logicism—all stand in fundamental disagreement with Platonism. Nevertheless, various versions of Platonistic thinking survive in contemporary philosophical circles. The aim of this paper is to describe these views, and, as my title suggests, to trace their roots.I'll begin with some preliminary (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Fictionalism in the philosophy of mathematics.Mark Colyvan - 1996 - In Edward Craig (ed.), Routledge Encyclopedia of Philosophy: Genealogy to Iqbal. New York: Routledge.
    Fictionalism in the philosophy of mathematics is the view that mathematical statements, such as ‘8+5=13’ and ‘π is irrational’, are to be interpreted at face value and, thus interpreted, are false. Fictionalists are typically driven to reject the truth of such mathematical statements because these statements imply the existence of mathematical entities, and according to fictionalists there are no such entities. Fictionalism is a nominalist (or anti-realist) account of mathematics in that it denies the existence of a realm of abstract (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Survey article. Listening to fictions: A study of fieldian nominalism.Fraser MacBride - 1999 - British Journal for the Philosophy of Science 50 (3):431-455.
    One cannot escape the feeling that these mathematical formulae have an independent existence and an intelligence of their own, that they are wiser than we are, wiser even than their discoverers.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The miracle of applied mathematics.Mark Colyvan - 2001 - Synthese 127 (3):265-277.
    Mathematics has a great variety ofapplications in the physical sciences.This simple, undeniable fact, however,gives rise to an interestingphilosophical problem:why should physical scientistsfind that they are unable to evenstate their theories without theresources of abstract mathematicaltheories? Moreover, theformulation of physical theories inthe language of mathematicsoften leads to new physical predictionswhich were quite unexpected onpurely physical grounds. It is thought by somethat the puzzles the applications of mathematicspresent are artefacts of out-dated philosophical theories about thenature of mathematics. In this paper I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Fictionalism and the Problem of Universals in the Philosophy of Mathematics.Strahinja Đorđević - 2018 - Filozofija I Društvo 29 (3):415-428.
    Many long-standing problems pertaining to contemporary philosophy of mathematics can be traced back to different approaches in determining the nature of mathematical entities which have been dominated by the debate between realists and nominalists. Through this discussion conceptualism is represented as a middle solution. However, it seems that until the 20th century there was no third position that would not necessitate any reliance on one of the two points of view. Fictionalism, on the other hand, observes mathematical entities in a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fictionalism, theft, and the story of mathematics.Mark Balaguer - 2009 - Philosophia Mathematica 17 (2):131-162.
    This paper develops a novel version of mathematical fictionalism and defends it against three objections or worries, viz., (i) an objection based on the fact that there are obvious disanalogies between mathematics and fiction; (ii) a worry about whether fictionalism is consistent with the fact that certain mathematical sentences are objectively correct whereas others are incorrect; and (iii) a recent objection due to John Burgess concerning “hermeneuticism” and “revolutionism”.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Objects and objectivity : Alternatives to mathematical realism.Ebba Gullberg - 2011 - Dissertation, Umeå Universitet
    This dissertation is centered around a set of apparently conflicting intuitions that we may have about mathematics. On the one hand, we are inclined to believe that the theorems of mathematics are true. Since many of these theorems are existence assertions, it seems that if we accept them as true, we also commit ourselves to the existence of mathematical objects. On the other hand, mathematical objects are usually thought of as abstract objects that are non-spatiotemporal and causally inert. This makes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Between Mathematics and Physics.Michael D. Resnik - 1990 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990 (2):368-378.
    The distinction between mathematical and physical objects has probably played a greater role shaping the philosophy of mathematics than the distinction between observable and theoretical entities has had in defining the philosophy of science. All the major movements in the philosophy of mathematics may be seen as attempts to free mathematics of an abstract ontology or to come to terms with it. The reasons are epistemic. Most philosophers of mathematics believe that the abstractaess of mathematical objects introduces special difficulties in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Platonism in Metaphysics.Markn D. Balaguer - 2016 - Stanford Encyclopedia of Philosophy 1 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Towards a Fictionalist Philosophy of Mathematics.Robert Knowles - 2015 - Dissertation, University of Manchester
    In this thesis, I aim to motivate a particular philosophy of mathematics characterised by the following three claims. First, mathematical sentences are generally speaking false because mathematical objects do not exist. Second, people typically use mathematical sentences to communicate content that does not imply the existence of mathematical objects. Finally, in using mathematical language in this way, speakers are not doing anything out of the ordinary: they are performing straightforward assertions. In Part I, I argue that the role played by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Think about the Consequences! Nominalism and the Argument from the Philosophy of Logic.Torsten Wilholt - 2006 - Dialectica 60 (2):115-133.
    Nominalism faces the task of explaining away the ontological commitments of applied mathematical statements. This paper reviews an argument from the philosophy of logic that focuses on this task and which has been used as an objection to certain specific formulations of nominalism. The argument as it is developed in this paper aims to show that nominalism in general does not have the epistemological advantages its defendants claim it has. I distinguish between two strategies that are available to the nominalist: (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Does The Necessity of Mathematical Truths Imply Their Apriority?Mark McEvoy - 2013 - Pacific Philosophical Quarterly 94 (4):431-445.
    It is sometimes argued that mathematical knowledge must be a priori, since mathematical truths are necessary, and experience tells us only what is true, not what must be true. This argument can be undermined either by showing that experience can yield knowledge of the necessity of some truths, or by arguing that mathematical theorems are contingent. Recent work by Albert Casullo and Timothy Williamson argues (or can be used to argue) the first of these lines; W. V. Quine and Hartry (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation