Switch to: References

Add citations

You must login to add citations.
  1. The Evolution of Ecosystem Phenotypes.Sébastien Ibanez - 2020 - Biological Theory 15 (2):91-106.
    Evolution by natural selection has been extended to several supraorganismic levels, but whether it can apply to ecosystems remains controversial on two main counts. First, local ecosystems are loosely individuated, so that it is unclear how they manifest heredity and fitness. Second, even if they did, the meta-ecosystem formed by this population of local ecosystems will also suffer from a very low degree of cohesion, which will jeopardize any ENS. We suggest a way to overcome both issues, focusing on ecosystem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific realism with historical essences: the case of species.Marion Godman - 2018 - Synthese 198 (Suppl 12):3041-3057.
    Natural kinds, real kinds, or, following J.S Mill simply, Kinds, are thought to be an important asset for scientific realists in the non-fundamental (or “special”) sciences. Essential natures are less in vogue. I show that the realist would do well to couple her Kinds with essential natures in order to strengthen their epistemic and ontological credentials. I argue that these essential natures need not however be intrinsic to the Kind’s members; they may be historical. I concentrate on assessing the merits (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Species Pluralism: Conceptual, Ontological, and Practical Dimensions.Justin Bzovy - unknown
    Species are central to biology, but there is currently no agreement on what the adequate species concept should be, and many have adopted a pluralist stance: different species concepts will be required for different purposes. This thesis is a multidimensional analysis of species pluralism. First I explicate how pluralism differs monism and relativism. I then consider the history of species pluralism. I argue that we must re-frame the species problem, and that re-evaluating Aristotle's role in the histories of systematics can (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The series, the network, and the tree: changing metaphors of order in nature.Olivier Rieppel - 2010 - Biology and Philosophy 25 (4):475-496.
    The history of biological systematics documents a continuing tension between classifications in terms of nested hierarchies congruent with branching diagrams (the ‘Tree of Life’) versus reticulated relations. The recognition of conflicting character distribution led to the dissolution of the scala naturae into reticulated systems, which were then transformed into phylogenetic trees by the addition of a vertical axis. The cladistic revolution in systematics resulted in a representation of phylogeny as a strictly bifurcating pattern (cladogram). Due to the ubiquity of character (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Species as a process.Olivier Rieppel - 2008 - Acta Biotheoretica (1-2):33-49.
    Species are generally considered to be the basic units of evolution, and hence to constitute spatio-temporally bounded entities. In addition, it has been argued that species also instantiate a natural kind. Evolution is fundamentally about change. The question then is how species can remain the same through evolutionary change. Proponents of the species qua individuals thesis individuate species through their unique evolutionary origin. Individuals, or spatio-temporally located particulars in general, can be bodies, objects, events, or processes, or a combination of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • When Traditional Essentialism Fails: Biological Natural Kinds.Robert A. Wilson, Matthew J. Barker & Ingo Brigandt - 2007 - Philosophical Topics 35 (1-2):189-215.
    Essentialism is widely regarded as a mistaken view of biological kinds, such as species. After recounting why (sections 2-3), we provide a brief survey of the chief responses to the “death of essentialism” in the philosophy of biology (section 4). We then develop one of these responses, the claim that biological kinds are homeostatic property clusters (sections 5-6) illustrating this view with several novel examples (section 7). Although this view was first expressed 20 years ago, and has received recent discussion (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Natural Kinds in Evolution and Systematics: Metaphysical and Epistemological Considerations.Ingo Brigandt - 2009 - Acta Biotheoretica 57 (1-2):77-97.
    Despite the traditional focus on metaphysical issues in discussions of natural kinds in biology, epistemological considerations are at least as important. By revisiting the debate as to whether taxa are kinds or individuals, I argue that both accounts are metaphysically compatible, but that one or the other approach can be pragmatically preferable depending on the epistemic context. Recent objections against construing species as homeostatic property cluster kinds are also addressed. The second part of the paper broadens the perspective by considering (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Typology and Natural Kinds in Evo-Devo.Ingo Brigandt - 2021 - In Nuño De La Rosa Laura & Müller Gerd (eds.), Evolutionary Developmental Biology: A Reference Guide. Springer. pp. 483-493.
    The traditional practice of establishing morphological types and investigating morphological organization has found new support from evolutionary developmental biology (evo-devo), especially with respect to the notion of body plans. Despite recurring claims that typology is at odds with evolutionary thinking, evo-devo offers mechanistic explanations of the evolutionary origin, transformation, and evolvability of morphological organization. In parallel, philosophers have developed non-essentialist conceptions of natural kinds that permit kinds to exhibit variation and undergo change. This not only facilitates a construal of species (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Homology: Homeostatic Property Cluster Kinds in Systematics and Evolution.Leandro Assis & Ingo Brigandt - 2009 - Evolutionary Biology 36:248-255.
    Taxa and homologues can in our view be construed both as kinds and as individuals. However, the conceptualization of taxa as natural kinds in the sense of homeostatic property cluster kinds has been criticized by some systematists, as it seems that even such kinds cannot evolve due to their being homeostatic. We reply by arguing that the treatment of transformational and taxic homologies, respectively, as dynamic and static aspects of the same homeostatic property cluster kind represents a good perspective for (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Explanation and Falsification in Phylogenetic Inference: Exercises in Popperian Philosophy.Arnold G. Kluge - 2009 - Acta Biotheoretica 57 (1-2):171-186.
    Deduction leads to causal explanation in phylogenetic inference when the evidence, the systematic character, is conceptualized as a transformation series. Also, the deductive entailment of modus tollens is satisfied when those kinds of events are operationalized as patristic difference. Arguments to the contrary are based largely on the premise that character-states are defined intensionally as objects, in terms of similarity relations. However, such relations leave biologists without epistemological access to the causal explanation and explanatory power of historical statements. Moreover, the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Complexity begets crosscutting, dooms hierarchy.Joyce C. Havstad - 2021 - Synthese 198 (8):7665-7696.
    There is a perennial philosophical dream of a certain natural order for the natural kinds. The name of this dream is ‘the hierarchy requirement’. According to this postulate, proper natural kinds form a taxonomy which is both unique and traditional. Here I demonstrate that complex scientific objects exist: objects which generate different systems of scientific classification, produce myriad legitimate alternatives amongst the nonetheless still natural kinds, and make the hierarchical dream impossible to realize, except at absurdly great cost. Philosophical hopes (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Conceptualizing communities as natural entities: a philosophical argument with basic and applied implications.David A. Steen, Kyle Barrett, Ellen Clarke & Craig Guyer - 2017 - Biology and Philosophy 32 (6):1019-1034.
    Recent work has suggested that conservation efforts such as restoration ecology and invasive species eradication are largely value-driven pursuits. Concurrently, changes to global climate are forcing ecologists to consider if and how collections of species will migrate, and whether or not we should be assisting such movements. Herein, we propose a philosophical framework which addresses these issues by utilizing ecological and evolutionary interrelationships to delineate individual ecological communities. Specifically, our Evolutionary Community Concept recognizes unique collections of species that interact and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why the Debate about the Metaphysics of Biological Species Should Not Be Deflated.Giulio Sciacca - 2020 - History of Philosophy & Logical Analysis 23 (2):474-497.
    Some philosophers of biology state that the metaphysical status of biological species is context determined by the use different branches of biology make of their corresponding proper names, so that one and the same biological species can be both an individual and a natural kind. In this paper, I aim to undermine the idea, often associated with the present thesis, according to which the debate about the metaphysical status of biological species should be deflated, since it would be possible to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Biological Individuals and Natural Kinds.Olivier Rieppel - 2013 - Biological Theory 7 (2):162-169.
    This paper takes a hierarchical approach to the question whether species are individuals or natural kinds. The thesis defended here is that species are spatiotemporally located complex wholes (individuals), that are composed of (i.e., include) causally interdependent parts, which collectively also instantiate a homeostatic property cluster (HPC) natural kind. Species may form open or closed genetic systems that are dynamic in nature, that have fuzzy boundaries due to the processual nature of speciation, that may have leaky boundaries as is manifest (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Natural Kinds in Philosophy and in the Life Sciences: Scholastic Twilight or New Dawn? [REVIEW]Miles MacLeod & Thomas A. C. Reydon - 2013 - Biological Theory 7 (2):89-99.
    This article, which is intended both as a position paper in the philosophical debate on natural kinds and as the guest editorial to this thematic issue, takes up the challenge posed by Ian Hacking in his paper, “Natural Kinds: Rosy Dawn, Scholastic Twilight.” Whereas a straightforward interpretation of that paper suggests that according to Hacking the concept of natural kinds should be abandoned, both in the philosophy of science and in philosophy more generally, we suggest that an alternative and less (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Limitations of Natural Kind Talk in the Life Sciences: Homology and Other Cases. [REVIEW]Miles MacLeod - 2013 - Biological Theory 7 (2):109-120.
    The aim of this article is to detail some reservations against the beliefs, claims, or presuppositions that current essentialist natural kind concepts (including homeostatic property cluster kinds) model grouping practices in the life sciences accurately and generally. Such concepts fit reasoning into particular preconceived epistemic and semantic patterns. The ability of these patterns to fit scientific practice is often argued in support of homeostatic property cluster accounts, yet there are reasons to think that in the life sciences kind concepts exhibit (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Species as Explanatory Hypotheses: Refinements and Implications.Kirk Fitzhugh - 2009 - Acta Biotheoretica 57 (1-2):201-248.
    The formal definition of species as explanatory hypotheses presented by Fitzhugh is emended. A species is an explanatory account of the occurrences of the same character among gonochoristic or cross-fertilizing hermaphroditic individuals by way of character origin and subsequent fixation during tokogeny. In addition to species, biological systematics also employs hypotheses that are ontogenetic, tokogenetic, intraspecific, and phylogenetic, each of which provides explanatory hypotheses for distinctly different classes of causal questions. It is suggested that species hypotheses can not be applied (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Species are, at the same time, kinds and individuals: a causal argument based on an empirical approach to species identity.Elena Casetta & Davide Vecchi - 2019 - Synthese 198 (Suppl 12):3007-3025.
    After having reconstructed a minimal biological characterisation of species, we endorse an “empirical approach” based on the idea that it is the peculiar evolutionary history of the species at issue—its peculiar origination process, its peculiar metapopulation structure and the peculiar mixture and strength of homeostatic processes vis à vis heterostatic ones—that determines species’ identity at a time and through time. We then explore the consequences of the acceptance of the empirical approach in settling the individuals versus kinds dispute. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Evolvability as a Disposition: Philosophical Distinctions, Scientific Implications.Ingo Brigandt, Cristina Villegas, Alan C. Love & Laura Nuño de la Rosa - 2023 - In Thomas F. Hansen, David Houle, Mihaela Pavlicev & Christophe Pélabon (eds.), Evolvability: A Unifying Concept in Evolutionary Biology? National Geographic Books. pp. 55–72.
    A disposition or dispositional property is a capacity, ability, or potential to display or exhibit some outcome. Evolvability refers to a disposition to evolve. This chapter discusses why the dispositional nature of evolvability matters—why philosophical distinctions about dispositions can have scientific implications. To that end, we build a conceptual toolkit with vocabulary from prior philosophical analyses using a different disposition: protein foldability. We then apply this toolkit to address several methodological questions related to evolvability. What entities are the bearers of (...)
    Download  
     
    Export citation  
     
    Bookmark