Switch to: References

Add citations

You must login to add citations.
  1. Small Grzegorczyk classes and limited minimum.Keith Harrow - 1975 - Mathematical Logic Quarterly 21 (1):417-426.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ramified recurrence and computational complexity III: Higher type recurrence and elementary complexity.Daniel Leivant - 1999 - Annals of Pure and Applied Logic 96 (1-3):209-229.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Combinatorial principles in elementary number theory.Alessandro Berarducci & Benedetto Intrigila - 1991 - Annals of Pure and Applied Logic 55 (1):35-50.
    We prove that the theory IΔ0, extended by a weak version of the Δ0-Pigeonhole Principle, proves that every integer is the sum of four squares (Lagrange's theorem). Since the required weak version is derivable from the theory IΔ0 + ∀x (xlog(x) exists), our results give a positive answer to a question of Macintyre (1986). In the rest of the paper we consider the number-theoretical consequences of a new combinatorial principle, the ‘Δ0-Equipartition Principle’ (Δ0EQ). In particular we give a new proof, (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Fifty years of the spectrum problem: survey and new results.Arnaud Durand, Neil D. Jones, Johann A. Makowsky & Malika More - 2012 - Bulletin of Symbolic Logic 18 (4):505-553.
    In 1952, Heinrich Scholz published a question in The Journal of Symbolic Logic asking for a characterization of spectra, i.e., sets of natural numbers that are the cardinalities of finite models of first order sentences. Günter Asser in turn asked whether the complement of a spectrum is always a spectrum. These innocent questions turned out to be seminal for the development of finite model theory and descriptive complexity. In this paper we survey developments over the last 50-odd years pertaining to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Elementary Functions and LOOP Programs.Zlatan Damnjanovic - 1994 - Notre Dame Journal of Formal Logic 35 (4):496-522.
    We study a hierarchy of Kalmàr elementary functions on integers based on a classification of LOOP programs of limited complexity, namely those in which the depth of nestings of LOOP commands does not exceed two. It is proved that -place functions in can be enumerated by a single function in , and that the resulting hierarchy of elementary predicates (i.e., functions with 0,1-values) is proper in that there are predicates that are not in . Along the way the rudimentary predicates (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Elementary realizability.Zlatan Damnjanovic - 1997 - Journal of Philosophical Logic 26 (3):311-339.
    A realizability notion that employs only Kalmar elementary functions is defined, and, relative to it, the soundness of EA-(Π₁⁰-IR), a fragment of Heyting Arithmetic (HA) with names and axioms for all elementary functions and induction rule restricted to Π₁⁰ formulae, is proved. As a corollary, it is proved that the provably recursive functions of EA-(Π₁⁰-IR) are precisely the elementary functions. Elementary realizability is proposed as a model of strict arithmetic constructivism, which allows only those constructive procedures for which the amount (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Czego informatycy nauczyli się od Andrzeja Grzegorczyka?Andrzej Salwicki - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The $\mu$ -measure as a tool for classifying computational complexity.Karl-Heinz Niggl - 2000 - Archive for Mathematical Logic 39 (7):515-539.
    Two simply typed term systems $\sf {PR}_1$ and $\sf {PR}_2$ are considered, both for representing algorithms computing primitive recursive functions. $\sf {PR}_1$ is based on primitive recursion, $\sf {PR}_2$ on recursion on notation. A purely syntactical method of determining the computational complexity of algorithms in $\sf {PR}_i$ , called $\mu$ -measure, is employed to uniformly integrate traditional results in subrecursion theory with resource-free characterisations of sub-elementary complexity classes. Extending the Schwichtenberg and Müller characterisation of the Grzegorczyk classes ${\mathcal{E}}_n$ for $n\ge (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The intrinsic difficulty of recursive functions.F. W. Kroon - 1996 - Studia Logica 56 (3):427 - 454.
    This paper deals with a philosophical question that arises within the theory of computational complexity: how to understand the notion of INTRINSIC complexity or difficulty, as opposed to notions of difficulty that depend on the particular computational model used. The paper uses ideas from Blum's abstract approach to complexity theory to develop an extensional approach to this question. Among other things, it shows how such an approach gives detailed confirmation of the view that subrecursive hierarchies tend to rank functions in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetizing Uniform NC.Bill Allen - 1991 - Annals of Pure and Applied Logic 53 (1):1-50.
    Allen, B., Arithmetizing Uniform NC, Annals of Pure and Applied Logic 53 1–50. We give a characterization of the complexity class Uniform NC as an algebra of functions on the natural numbers which is the closure of several basic functions under composition and a schema of recursion. We then define a fragment of bounded arithmetic, and, using our characterization of Uniform NC, show that this fragment is capable of proving the totality of all of the functions in Uniform NC. Lastly, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations