Switch to: References

Add citations

You must login to add citations.
  1. A data-centric approach for ethical and trustworthy AI in journalism.Laurence Dierickx, Andreas Lothe Opdahl, Sohail Ahmed Khan, Carl-Gustav Lindén & Diana Carolina Guerrero Rojas - 2024 - Ethics and Information Technology 26 (4):1-13.
    AI-driven journalism refers to various methods and tools for gathering, verifying, producing, and distributing news information. Their potential is to extend human capabilities and create new forms of augmented journalism. Although scholars agreed on the necessity to embed journalistic values in these systems to make AI systems accountable, less attention was paid to data quality, while the results’ accuracy and efficiency depend on high-quality data in any machine learning task. Assessing data quality in the context of AI-driven journalism requires a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mapping Ethical Artificial Intelligence Policy Landscape: A Mixed Method Analysis.Tahereh Saheb - 2024 - Science and Engineering Ethics 30 (2):1-26.
    As more national governments adopt policies addressing the ethical implications of artificial intelligence, a comparative analysis of policy documents on these topics can provide valuable insights into emerging concerns and areas of shared importance. This study critically examines 57 policy documents pertaining to ethical AI originating from 24 distinct countries, employing a combination of computational text mining methods and qualitative content analysis. The primary objective is to methodically identify common themes throughout these policy documents and perform a comparative analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ethical Data Collection for Medical Image Analysis: a Structured Approach.S. T. Padmapriya & Sudhaman Parthasarathy - 2023 - Asian Bioethics Review 16 (1):95-108.
    Due to advancements in technology such as data science and artificial intelligence, healthcare research has gained momentum and is generating new findings and predictions on abnormalities leading to the diagnosis of diseases or disorders in human beings. On one hand, the extensive application of data science to healthcare research is progressing faster, while on the other hand, the ethical concerns and adjoining risks and legal hurdles those data scientists may face in the future slow down the progression of healthcare research. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reframing data ethics in research methods education: a pathway to critical data literacy.Javiera Atenas, Leo Havemann & Cristian Timmermann - 2023 - International Journal of Educational Technology in Higher Education 20:11.
    This paper presents an ethical framework designed to support the development of critical data literacy for research methods courses and data training programmes in higher education. The framework we present draws upon our reviews of literature, course syllabi and existing frameworks on data ethics. For this research we reviewed 250 research methods syllabi from across the disciplines, as well as 80 syllabi from data science programmes to understand how or if data ethics was taught. We also reviewed 12 data ethics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Moral Consideration of Artificial Entities: A Literature Review.Jamie Harris & Jacy Reese Anthis - 2021 - Science and Engineering Ethics 27 (4):1-95.
    Ethicists, policy-makers, and the general public have questioned whether artificial entities such as robots warrant rights or other forms of moral consideration. There is little synthesis of the research on this topic so far. We identify 294 relevant research or discussion items in our literature review of this topic. There is widespread agreement among scholars that some artificial entities could warrant moral consideration in the future, if not also the present. The reasoning varies, such as concern for the effects on (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Getting into the engine room: a blueprint to investigate the shadowy steps of AI ethics.Johan Rochel & Florian Evéquoz - 2021 - AI and Society 36 (2):609-622.
    Enacting an AI system typically requires three iterative phases where AI engineers are in command: selection and preparation of the data, selection and configuration of algorithmic tools, and fine-tuning of the different parameters on the basis of intermediate results. Our main hypothesis is that these phases involve practices with ethical questions. This paper maps these ethical questions and proposes a way to address them in light of a neo-republican understanding of freedom, defined as absence of domination. We thereby identify different (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices.Jessica Morley, Luciano Floridi, Libby Kinsey & Anat Elhalal - 2020 - Science and Engineering Ethics 26 (4):2141-2168.
    The debate about the ethical implications of Artificial Intelligence dates from the 1960s :741–742, 1960; Wiener in Cybernetics: or control and communication in the animal and the machine, MIT Press, New York, 1961). However, in recent years symbolic AI has been complemented and sometimes replaced by Neural Networks and Machine Learning techniques. This has vastly increased its potential utility and impact on society, with the consequence that the ethical debate has gone mainstream. Such a debate has primarily focused on principles—the (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Tradeoffs all the way down: Ethical abduction as a decision-making process for data-intensive technology development.Anissa Tanweer - 2022 - Big Data and Society 9 (1).
    Ample scholarship demonstrates that data-intensive technologies have the capacity to cause serious harm and that their developers are obliged to address ethics in their work. This ethnographic paper tells the story of data scientists attempting to instantiate a carefully considered ethical vision into a data infrastructure while balancing competing priorities, negotiating divergent interests, and wrestling with contrasting values. I use their story to develop the concept of “ethical abduction,” which I characterize as an exemplary process by which actors can intentionally (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cultivating Moral Attention: a Virtue-Oriented Approach to Responsible Data Science in Healthcare.Emanuele Ratti & Mark Graves - 2021 - Philosophy and Technology 34 (4):1819-1846.
    In the past few years, the ethical ramifications of AI technologies have been at the center of intense debates. Considerable attention has been devoted to understanding how a morally responsible practice of data science can be promoted and which values have to shape it. In this context, ethics and moral responsibility have been mainly conceptualized as compliance to widely shared principles. However, several scholars have highlighted the limitations of such a principled approach. Drawing from microethics and the virtue theory tradition, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Perspectives on computing ethics: a multi-stakeholder analysis.Damian Gordon, Ioannis Stavrakakis, J. Paul Gibson, Brendan Tierney, Anna Becevel, Andrea Curley, Michael Collins, William O’Mahony & Dympna O’Sullivan - 2022 - Journal of Information, Communication and Ethics in Society 20 (1):72-90.
    Purpose Computing ethics represents a long established, yet rapidly evolving, discipline that grows in complexity and scope on a near-daily basis. Therefore, to help understand some of that scope it is essential to incorporate a range of perspectives, from a range of stakeholders, on current and emerging ethical challenges associated with computer technology. This study aims to achieve this by using, a three-pronged, stakeholder analysis of Computer Science academics, ICT industry professionals, and citizen groups was undertaken to explore what they (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence.Alexander Buhmann & Christian Fieseler - forthcoming - Business Ethics Quarterly:1-34.
    Responsible innovation in artificial intelligence calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations