Switch to: References

Add citations

You must login to add citations.
  1. Drawing the line between kinematics and dynamics in special relativity.Michel Janssen - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (1):26-52.
    In his book, Physical Relativity, Harvey Brown challenges the orthodox view that special relativity is preferable to those parts of Lorentz's classical ether theory it replaced because it revealed various phenomena that were given a dynamical explanation in Lorentz's theory to be purely kinematical. I want to defend this orthodoxy. The phenomena most commonly discussed in this context in the philosophical literature are length contraction and time dilation. I consider three other phenomena of this kind that played a role in (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Explicit mathematical construction of relativistic nonlinear de Broglie waves described by three-dimensional (wave and electromagnetic) solitons “piloted” (controlled) by corresponding solutions of associated linear Klein-Gordon and Schrödinger equations.Jean-Pierre Vigier - 1991 - Foundations of Physics 21 (2):125-148.
    Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Particles, fields, and the measurement of electron spin.Charles T. Sebens - 2020 - Synthese 198 (12):11943-11975.
    This article compares treatments of the Stern–Gerlach experiment across different physical theories, building up to a novel analysis of electron spin measurement in the context of classical Dirac field theory. Modeling the electron as a classical rigid body or point particle, we can explain why the entire electron is always found at just one location on the detector but we cannot explain why there are only two locations where the electron is ever found. Using non-relativistic or relativistic quantum mechanics, we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Eliminating Electron Self-repulsion.Charles T. Sebens - 2023 - Foundations of Physics 53 (4):1-15.
    Problems of self-interaction arise in both classical and quantum field theories. To understand how such problems are to be addressed in a quantum theory of the Dirac and electromagnetic fields (quantum electrodynamics), we can start by analyzing a classical theory of these fields. In such a classical field theory, the electron has a spread-out distribution of charge that avoids some of the problems of self-interaction facing point charge models. However, there remains the problem that the electron will experience self-repulsion. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inconsistency in classical electrodynamics?F. A. Muller - 2007 - Philosophy of Science 74 (2):253-277.
    In a recent issue of this journal, M. Frisch claims to have proven that classical electrodynamics is an inconsistent physical theory. We argue that he has applied classical electrodynamics inconsistently. Frisch also claims that all other classical theories of electromagnetic phenomena, when consistent and in some sense an approximation of classical electrodynamics, are haunted by “serious conceptual problems” that defy resolution. We argue that this claim is based on a partisan if not misleading presentation of theoretical research in classical electrodynamics.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Poynting Theorem, Relativistic Transformation of Total Energy–Momentum and Electromagnetic Energy–Momentum Tensor.Alexander Kholmetskii, Oleg Missevitch & Tolga Yarman - 2016 - Foundations of Physics 46 (2):236-261.
    We address to the Poynting theorem for the bound electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy–momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product \ and bound electric field \ are generated by the same source (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Equivalence Between Self-energy and Self-mass in Classical Electron Model.M. Kh Khokonov & J. U. Andersen - 2019 - Foundations of Physics 49 (7):750-782.
    A cornerstone of physics, Maxwell‘s theory of electromagnetism, apparently contains a fatal flaw. The standard expressions for the electromagnetic field energy and the self-mass of an electron of finite extension do not obey Einstein‘s famous equation, \, but instead fulfill this relation with a factor 4/3 on the left-hand side. Furthermore, the energy and momentum of the electromagnetic field associated with the charge fail to transform as a four-vector. Many famous physicists have contributed to the debate of this so-called 4/3-problem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Drawing the line between kinematics and dynamics in special relativity.Michel Janssen - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (1):26-52.
    In his book, Physical Relativity, Harvey Brown challenges the orthodox view that special relativity is preferable to those parts of Lorentz's classical ether theory it replaced because it revealed various phenomena that were given a dynamical explanation in Lorentz's theory to be purely kinematical. I want to defend this orthodoxy. The phenomena most commonly discussed in this context in the philosophical literature are length contraction and time dilation. I consider three other phenomena of this kind that played a role in (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • On Fermi’s Resolution of the “4/3 Problem” in the Classical Theory of the Electron.Donato Bini, Andrea Geralico, Robert T. Jantzen & Remo Ruffini - 2024 - Foundations of Physics 54 (3):1-44.
    We discuss the solution proposed by Fermi to the so called “4/3 problem” in the classical theory of the electron, a problem which puzzled the physics community for many decades before and after his contribution. Unfortunately his early resolution of the problem in 1922–1923 published in three versions in Italian and German journals (after three preliminary articles on the topic) went largely unnoticed. Even more recent texts devoted to classical electron theory still do not present his argument or acknowledge the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Electron spin or “classically non-describable two-valuedness”.Domenico Giulini - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):557-578.
    In December 1924 Wolfgang Pauli proposed the idea of an inner degree of freedom of the electron, which he insisted should be thought of as genuinely quantum mechanical in nature. Shortly thereafter Ralph Kronig and, independently, Samuel Goudsmit and George Uhlenbeck took up a less radical stance by suggesting that this degree of freedom somehow corresponded to an inner rotational motion, though it was unclear from the very beginning how literal one was actually supposed to take this picture, since it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Time-Symmetric Soliton Dynamics à la de Broglie.Aurélien Drezet - 2023 - Foundations of Physics 53 (4):1-36.
    In this work we develop a time-symmetric soliton theory for quantum particles inspired from works by de Broglie and Bohm. We consider explicitly a non-linear Klein–Gordon theory leading to monopolar oscillating solitons. We show that the theory is able to reproduce the main results of the pilot-wave interpretation for non interacting particles in a external electromagnetic field. In this regime, using the time symmetry of the theory, we are also able to explain quantum entanglement between several solitons and we reproduce (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The extended classical charged particle.R. G. Beil - 1989 - Foundations of Physics 19 (3):319-338.
    A theory of the extended classical charged particle is presented. The theory assumes extension along the forward light cone of the particle instead of the usual now-plane. Solutions are given for many of the traditional problems including 4/3, instability, infinite self-energy, and runaway velocity. The Lorentz and Lorentz-Dirac equations are derived from a more general equation of motion.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relativistic Dynamics of Accelerating Particles Derived from Field Equations.Anatoli Babin & Alexander Figotin - 2012 - Foundations of Physics 42 (8):996-1014.
    In relativistic mechanics the energy-momentum of a free point mass moving without acceleration forms a four-vector. Einstein’s celebrated energy-mass relation E=mc 2 is commonly derived from that fact. By contrast, in Newtonian mechanics the mass is introduced for an accelerated motion as a measure of inertia. In this paper we rigorously derive the relativistic point mechanics and Einstein’s energy-mass relation using our recently introduced neoclassical field theory where a charge is not a point but a distribution. We show that both (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Electrodynamics of Balanced Charges.Anatoli Babin & Alexander Figotin - 2011 - Foundations of Physics 41 (2):242-260.
    We introduce here a new “neoclassical” electromagnetic (EM) theory in which elementary charges are represented by wave functions and individual EM fields to account for their EM interactions. We call so defined charges balanced or “b-charges”. We construct the EM theory of b-charges (BEM) based on a relativistic field Lagrangian and show that: (i) the elementary EM fields satisfy the Maxwell equations; (ii) the Newton equations with the Lorentz forces hold approximately when b-charges are well separated and move with non-relativistic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Electromagnetic models of the electron and the transition from classical to relativistic mechanics.Michel Janssen & Matthew Mecklenburg - unknown
    This paper is part II of a trilogy on the transition from classical particle mechanics to relativistic continuum mechanics that one of the authors is working on. The first part, on the Trouton experiment, was published in the Stachel festschrift (Janssen 2003). This paper focuses on the Lorentz-Poincaré electron, and, in particular, on the "Poincaré pressure" or "Poincaré stresses" introduced to stabilize the electron. It covers both the original argument by Poincaré (1906) and a modern relativistic argument for adding a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations