Switch to: References

Add citations

You must login to add citations.
  1. Wellfoundedness proofs by means of non-monotonic inductive definitions II: first order operators.Toshiyasu Arai - 2010 - Annals of Pure and Applied Logic 162 (2):107-143.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Realization of analysis into explicit mathematics.Sergei Tupailo - 2001 - Journal of Symbolic Logic 66 (4):1848-1864.
    We define a novel interpretation R of second order arithmetic into Explicit Mathematics. As a difference from standard D-interpretation, which was used before and was shown to interpret only subsystems proof-theoretically weaker than T 0 , our interpretation can reach the full strength of T 0 . The R-interpretation is an adaptation of Kleene's recursive realizability, and is applicable only to intuitionistic theories.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Universes in explicit mathematics.Gerhard Jäger, Reinhard Kahle & Thomas Studer - 2001 - Annals of Pure and Applied Logic 109 (3):141-162.
    This paper deals with universes in explicit mathematics. After introducing some basic definitions, the limit axiom and possible ordering principles for universes are discussed. Later, we turn to least universes, strictness and name induction. Special emphasis is put on theories for explicit mathematics with universes which are proof-theoretically equivalent to Feferman's.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Ordinal analysis by transformations.Henry Towsner - 2009 - Annals of Pure and Applied Logic 157 (2-3):269-280.
    The technique of using infinitary rules in an ordinal analysis has been one of the most productive developments in ordinal analysis. Unfortunately, one of the most advanced variants, the Buchholz Ωμ rule, does not apply to systems much stronger than -comprehension. In this paper, we propose a new extension of the Ω rule using game-theoretic quantifiers. We apply this to a system of inductive definitions with at least the strength of a recursively inaccessible ordinal.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory.Michael Rathjen - 2005 - Synthese 147 (1):81-120.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Extending the system T0 of explicit mathematics: the limit and Mahlo axioms.Gerhard Jäger & Thomas Studer - 2002 - Annals of Pure and Applied Logic 114 (1-3):79-101.
    In this paper we discuss extensions of Feferman's theory T 0 for explicit mathematics by the so-called limit and Mahlo axioms and present a novel approach to constructing natural recursion-theoretic models for systems of explicit mathematics which is based on nonmonotone inductive definitions.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Realization of constructive set theory into explicit mathematics: a lower bound for impredicative Mahlo universe.Sergei Tupailo - 2003 - Annals of Pure and Applied Logic 120 (1-3):165-196.
    We define a realizability interpretation of Aczel's Constructive Set Theory CZF into Explicit Mathematics. The final results are that CZF extended by Mahlo principles is realizable in corresponding extensions of T 0 , thus providing relative lower bounds for the proof-theoretic strength of the latter.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • From realizability to induction via dependent intersection.Aaron Stump - 2018 - Annals of Pure and Applied Logic 169 (7):637-655.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical proof theory in the light of ordinal analysis.Reinhard Kahle - 2002 - Synthese 133 (1/2):237 - 255.
    We give an overview of recent results in ordinal analysis. Therefore, we discuss the different frameworks used in mathematical proof-theory, namely "subsystem of analysis" including "reverse mathematics", "Kripke-Platek set theory", "explicit mathematics", "theories of inductive definitions", "constructive set theory", and "Martin-Löf's type theory".
    Download  
     
    Export citation  
     
    Bookmark