Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)What Is Nature-Like Computation? A Behavioural Approach and a Notion of Programmability.Hector Zenil - 2013 - Philosophy and Technology (3):1-23.
    The aim of this paper is to propose an alternative behavioural definition of computation (and of a computer) based simply on whether a system is capable of reacting to the environment—the input—as reflected in a measure of programmability. This definition is intended to have relevance beyond the realm of digital computers, particularly vis-à-vis natural systems. This will be done by using an extension of a phase transition coefficient previously defined in an attempt to characterise the dynamical behaviour of cellular automata (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Proving church's thesis.Robert Black - 2000 - Philosophia Mathematica 8 (3):244--58.
    Arguments to the effect that Church's thesis is intrinsically unprovable because proof cannot relate an informal, intuitive concept to a mathematically defined one are unconvincing, since other 'theses' of this kind have indeed been proved, and Church's thesis has been proved in one direction. However, though evidence for the truth of the thesis in the other direction is overwhelming, it does not yet amount to proof.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences (2nd edition).Bhupinder Singh Anand - 2024 - Mumbai: DBA Publishing (Second Edition).
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explication as a Three-Step Procedure: the case of the Church-Turing Thesis.Matteo De Benedetto - 2021 - European Journal for Philosophy of Science 11 (1):1-28.
    In recent years two different axiomatic characterizations of the intuitive concept of effective calculability have been proposed, one by Sieg and the other by Dershowitz and Gurevich. Analyzing them from the perspective of Carnapian explication, I argue that these two characterizations explicate the intuitive notion of effective calculability in two different ways. I will trace back these two ways to Turing’s and Kolmogorov’s informal analyses of the intuitive notion of calculability and to their respective outputs: the notion of computorability and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Beckmann Arnold, Berger Ulrich, Löwe Benedikt & Tucker John V. (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Springer. pp. 575--583.
    Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • 1999 Spring Meeting of the Association for Symbolic Logic.Charles Parsons - 1999 - Bulletin of Symbolic Logic 5 (4):479-484.
    Download  
     
    Export citation  
     
    Bookmark  
  • Emil Post.Alasdair Urquhart - 2009 - In Dov Gabbay (ed.), The Handbook of the History of Logic. Elsevier. pp. 5--617.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Is there a nonrecursive decidable equational theory?Benjamin Wells - 2002 - Minds and Machines 12 (2):301-324.
    The Church-Turing Thesis (CTT) is often paraphrased as ``every computable function is computable by means of a Turing machine.'' The author has constructed a family of equational theories that are not Turing-decidable, that is, given one of the theories, no Turing machine can recognize whether an arbitrary equation is in the theory or not. But the theory is called pseudorecursive because it has the additional property that when attention is limited to equations with a bounded number of variables, one obtains, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Alan Turing and the mathematical objection.Gualtiero Piccinini - 2003 - Minds and Machines 13 (1):23-48.
    This paper concerns Alan Turing’s ideas about machines, mathematical methods of proof, and intelligence. By the late 1930s, Kurt Gödel and other logicians, including Turing himself, had shown that no finite set of rules could be used to generate all true mathematical statements. Yet according to Turing, there was no upper bound to the number of mathematical truths provable by intelligent human beings, for they could invent new rules and methods of proof. So, the output of a human mathematician, for (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The prospects for mathematical logic in the twenty-first century.Samuel R. Buss, Alexander S. Kechris, Anand Pillay & Richard A. Shore - 2001 - Bulletin of Symbolic Logic 7 (2):169-196.
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can Church’s thesis be viewed as a Carnapian explication?Paula Quinon - 2019 - Synthese 198 (Suppl 5):1047-1074.
    Turing and Church formulated two different formal accounts of computability that turned out to be extensionally equivalent. Since the accounts refer to different properties they cannot both be adequate conceptual analyses of the concept of computability. This insight has led to a discussion concerning which account is adequate. Some authors have suggested that this philosophical debate—which shows few signs of converging on one view—can be circumvented by regarding Church’s and Turing’s theses as explications. This move opens up the possibility that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Human-Effective Computability†.Marianna Antonutti Marfori & Leon Horsten - 2018 - Philosophia Mathematica 27 (1):61-87.
    We analyse Kreisel’s notion of human-effective computability. Like Kreisel, we relate this notion to a concept of informal provability, but we disagree with Kreisel about the precise way in which this is best done. The resulting two different ways of analysing human-effective computability give rise to two different variants of Church’s thesis. These are both investigated by relating them to transfinite progressions of formal theories in the sense of Feferman.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Effective Computation by Humans and Machines.Shagrir Oron - 2002 - Minds and Machines 12 (2):221-240.
    There is an intensive discussion nowadays about the meaning of effective computability, with implications to the status and provability of the Church–Turing Thesis (CTT). I begin by reviewing what has become the dominant account of the way Turing and Church viewed, in 1936, effective computability. According to this account, to which I refer as the Gandy–Sieg account, Turing and Church aimed to characterize the functions that can be computed by a human computer. In addition, Turing provided a highly convincing argument (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Diagonalisation and Church's Thesis: Kleene's Homework.Enrique Alonso & Maria Manzano - 2005 - History and Philosophy of Logic 26 (2):93-113.
    In this paper we will discuss the active part played by certain diagonal arguments in the genesis of computability theory. 1 In some cases it is enough to assume the enumerability of Y while in others the effective enumerability is a substantial demand. These enigmatical words by Kleene were our point of departure: When Church proposed this thesis, I sat down to disprove it by diagonalizing out of the class of the λ–definable functions. But, quickly realizing that the diagonalization cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Alonzo Church.Oliver Marshall & Harry Deutsch - 2021 - Stanford Encyclopedia of Philosophy.
    Alonzo Church (1903–1995) was a renowned mathematical logician, philosophical logician, philosopher, teacher and editor. He was one of the founders of the discipline of mathematical logic as it developed after Cantor, Frege and Russell. He was also one of the principal founders of the Association for Symbolic Logic and the Journal of Symbolic Logic. The list of his students, mathematical and philosophical, is striking as it contains the names of renowned logicians and philosophers. In this article, we focus primarily on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Turing-, human- and physical computability: An unasked question. [REVIEW]Eli Dresner - 2008 - Minds and Machines 18 (3):349-355.
    In recent years it has been convincingly argued that the Church-Turing thesis concerns the bounds of human computability: The thesis was presented and justified as formally delineating the class of functions that can be computed by a human carrying out an algorithm. Thus the Thesis needs to be distinguished from the so-called Physical Church-Turing thesis, according to which all physically computable functions are Turing computable. The latter is often claimed to be false, or, if true, contingently so. On all accounts, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Sign and the lambda-term.Kumiko Tanaka-Ishii & Yuichiro Ishii - 2008 - Semiotica 2008 (169):197-220.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Implicit and Explicit Examples of the Phenomenon of Deviant Encodings.Paula Quinon - 2020 - Studies in Logic, Grammar and Rhetoric 63 (1):53-67.
    The core of the problem discussed in this paper is the following: the Church-Turing Thesis states that Turing Machines formally explicate the intuitive concept of computability. The description of Turing Machines requires description of the notation used for the input and for the output. Providing a general definition of notations acceptable in the process of computations causes problems. This is because a notation, or an encoding suitable for a computation, has to be computable. Yet, using the concept of computation, in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gödel’s Philosophical Challenge.Wilfried Sieg - 2020 - Studia Semiotyczne 34 (1):57-80.
    The incompleteness theorems constitute the mathematical core of Gödel’s philosophical challenge. They are given in their “most satisfactory form”, as Gödel saw it, when the formality of theories to which they apply is characterized via Turing machines. These machines codify human mechanical procedures that can be carried out without appealing to higher cognitive capacities. The question naturally arises, whether the theorems justify the claim that the human mind has mathematical abilities that are not shared by any machine. Turing admits that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege’s Habilitationsschrift: Magnitude, Number and the Problems of Computability.Juan Luis Gastaldi - unknown
    The present paper proposes a new perspective on the place of Frege’s work in the history of computability theory, by calling attention to his 1874 Habilitationsschrift. It shows the prominent role played by functional iteration in Frege’s early efforts to provide a general concept of numerical magnitude, attached to an embryonic recursion schema and the use of functions as expressive means. Moreover, a connection is suggested between the iteration theory used and developed by Frege in his treatise and Schröder’s original (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Turing machines.David Barker-Plummer - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Mathieu Marion. Wittgenstein, Finitism, and the Foundations of Mathematics.Juliet Floyd - 2002 - Philosophia Mathematica 10 (1):67-88.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Book reviews. [REVIEW]Juliet Floyd - 2002 - Philosophia Mathematica 10 (1):67-88.
    Download  
     
    Export citation  
     
    Bookmark   1 citation