Switch to: References

Citations of:

N? Sets and models of wkl0

In Stephen Simpson (ed.), Reverse Mathematics 2001. Association for Symbolic Logic. pp. 21--352 (2005)

Add citations

You must login to add citations.
  1. (1 other version)Reverse mathematics and π21 comprehension.Carl Mummert & Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (4):526-533.
    We initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π2 1 comprehension. An MF space is defined to be a topological space of the form MF(P) with the topology generated by $\lbrace N_p \mid p \in P \rbrace$ . Here P is a poset, MF(P) is the set of maximal filters on P, and $N_p = \lbrace F \in MF(P) \mid p \in F \rbrace$ . If the poset P is countable, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Big in Reverse Mathematics: The Uncountability of the Reals.Sam Sanders - forthcoming - Journal of Symbolic Logic:1-34.
    The uncountability of$\mathbb {R}$is one of its most basic properties, known far outside of mathematics. Cantor’s 1874 proof of the uncountability of$\mathbb {R}$even appears in the very first paper on set theory, i.e., a historical milestone. In this paper, we study the uncountability of${\mathbb R}$in Kohlenbach’shigher-orderReverse Mathematics (RM for short), in the guise of the following principle:$$\begin{align*}\mathit{for \ a \ countable \ set } \ A\subset \mathbb{R}, \mathit{\ there \ exists } \ y\in \mathbb{R}\setminus A. \end{align*}$$An important conceptual observation is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Reverse Mathematics and Π 1 2 Comprehension.Carl Mummert & Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (3):526-533.
    We initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π12 comprehension. An MF space is defined to be a topological space of the form MF with the topology generated by {Np ∣ p ϵ P}. Here P is a poset, MF is the set of maximal filters on P, and Np = {F ϵ MF ∣ p ϵ F }. If the poset P is countable, the space MF is said to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Subsystems of second-order arithmetic between RCA0 and WKL0.Carl Mummert - 2008 - Archive for Mathematical Logic 47 (3):205-210.
    We study the Lindenbaum algebra ${\fancyscript{A}}$ (WKL o, RCA o) of sentences in the language of second-order arithmetic that imply RCA o and are provable from WKL o. We explore the relationship between ${\Sigma^1_1}$ sentences in ${\fancyscript{A}}$ (WKL o, RCA o) and ${\Pi^0_1}$ classes of subsets of ω. By applying a result of Binns and Simpson (Arch. Math. Logic 43(3), 399–414, 2004) about ${\Pi^0_1}$ classes, we give a specific embedding of the free distributive lattice with countably many generators into ${\fancyscript{A}}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Erna and Friedman's reverse mathematics.Sam Sanders - 2011 - Journal of Symbolic Logic 76 (2):637 - 664.
    Elementary Recursive Nonstandard Analysis, in short ERNA, is a constructive system of nonstandard analysis with a PRA consistency proof, proposed around 1995 by Patrick Suppes and Richard Sommer. Recently, the author showed the consistency of ERNA with several transfer principles and proved results of nonstandard analysis in the resulting theories (see [12] and [13]). Here, we show that Weak König's lemma (WKL) and many of its equivalent formulations over RCA₀ from Reverse Mathematics (see [21] and [22]) can be 'pushed down' (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Robust Theorems Due to Bolzano, Weierstrass, Jordan, and Cantor.Dag Normann & Sam Sanders - forthcoming - Journal of Symbolic Logic:1-51.
    Reverse Mathematics (RM hereafter) is a program in the foundations of mathematics where the aim is to identify theminimalaxioms needed to prove a given theorem from ordinary, i.e., non-set theoretic, mathematics. This program has unveiled surprising regularities: the minimal axioms are very oftenequivalentto the theorem over thebase theory, a weak system of ‘computable mathematics’, while most theorems are either provable in this base theory, or equivalent to one of onlyfourlogical systems. The latter plus the base theory are called the ‘Big (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Embeddings into the Medvedev and Muchnik lattices of Π0 1 classes.Stephen Binns & Stephen G. Simpson - 2004 - Archive for Mathematical Logic 43 (3):399-414.
    Let w and M be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π1 0 subsets of 2ω, under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of w . We show that many countable distributive lattices are lattice-embeddable below any non-zero element of M.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Almost everywhere domination.Natasha L. Dobrinen & Stephen G. Simpson - 2004 - Journal of Symbolic Logic 69 (3):914-922.
    A Turing degree a is said to be almost everywhere dominating if, for almost all $X \in 2^{\omega}$ with respect to the "fair coin" probability measure on $2^{\omega}$ , and for all g: $\omega \rightarrow \omega$ Turing reducible to X, there exists f: $\omega \rightarrow \omega$ of Turing degree a which dominates g. We study the problem of characterizing the almost everywhere dominating Turing degrees and other, similarly defined classes of Turing degrees. We relate this problem to some questions in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Models of the Weak König Lemma.Tin Lok Wong - 2017 - Annals of the Japan Association for Philosophy of Science 25:25-34.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Small Π0 1 Classes.Stephen Binns - 2005 - Archive for Mathematical Logic 45 (4):393-410.
    The property of smallness for Π0 1 classes is introduced and is investigated with respect to Medvedev and Muchnik degree. It is shown that the property of containing a small Π0 1 class depends only on the Muchnik degree of a Π0 1 class. A comparison is made with the idea of thinness for Π0 1 classesmsthm.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Coding true arithmetic in the Medvedev degrees of classes.Paul Shafer - 2012 - Annals of Pure and Applied Logic 163 (3):321-337.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Propagation of partial randomness.Kojiro Higuchi, W. M. Phillip Hudelson, Stephen G. Simpson & Keita Yokoyama - 2014 - Annals of Pure and Applied Logic 165 (2):742-758.
    Let f be a computable function from finite sequences of 0ʼs and 1ʼs to real numbers. We prove that strong f-randomness implies strong f-randomness relative to a PA-degree. We also prove: if X is strongly f-random and Turing reducible to Y where Y is Martin-Löf random relative to Z, then X is strongly f-random relative to Z. In addition, we prove analogous propagation results for other notions of partial randomness, including non-K-triviality and autocomplexity. We prove that f-randomness relative to a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations