Switch to: References

Citations of:

Partition numbers

Annals of Pure and Applied Logic 90 (1-3):243-262 (1997)

Add citations

You must login to add citations.
  1. Dualization of the Van Douwen Diagram.Jacek Cichoń, Adam Krawczyk, Barbara Majcher-Iwanow & Bogdan Wȩglorz - 2000 - Journal of Symbolic Logic 65 (2):959-968.
    We make a more systematic study of the van Douwen diagram for cardinal coefficients related to combinatorial properties of partitions of natural numbers.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Converse Dual Cardinals.Jörg Brendle & Shuguo Zhang - 2006 - Journal of Symbolic Logic 71 (1):22 - 34.
    We investigate the set (ω) of partitions of the natural numbers ordered by ≤* where A ≤* B if by gluing finitely many blocks of A we can get a partition coarser than B. In particular, we determine the values of a number of cardinals which are naturally associated with the structure ((ω),≥*), in terms of classical cardinal invariants of the continuum.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tight Eventually Different Families.Vera Fischer & Corey Bacal Switzer - 2024 - Journal of Symbolic Logic 89 (2):697-723.
    Generalizing the notion of a tight almost disjoint family, we introduce the notions of a tight eventually different family of functions in Baire space and a tight eventually different set of permutations of $\omega $. Such sets strengthen maximality, exist under $\mathsf {MA} (\sigma \mathrm {-centered})$ and come with a properness preservation theorem. The notion of tightness also generalizes earlier work on the forcing indestructibility of maximality of families of functions. As a result we compute the cardinals $\mathfrak {a}_e$ and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Partition Forcing and Independent Families.Jorge A. Cruz-Chapital, Vera Fischer, Osvaldo Guzmán & Jaroslav Šupina - 2023 - Journal of Symbolic Logic 88 (4):1590-1612.
    We show that Miller partition forcing preserves selective independent families and P-points, which implies the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {u}=\mathfrak {i}<\mathfrak {a}_T=\omega _2$. In addition, we show that Shelah’s poset for destroying the maximality of a given maximal ideal preserves tight mad families and so we establish the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {i}=\omega _1<\mathfrak {u}=\mathfrak {a}_T=\omega _2$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Around splitting and reaping for partitions of ω.Hiroaki Minami - 2010 - Archive for Mathematical Logic 49 (4):501-518.
    We investigate splitting number and reaping number for the structure (ω) ω of infinite partitions of ω. We prove that ${\mathfrak{r}_{d}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N}),\mathfrak{d}}$ and ${\mathfrak{s}_{d}\geq\mathfrak{b}}$ . We also show the consistency results ${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}$ and ${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})}$ . To prove the consistency ${\mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}$ and ${\mathfrak{s}_{d} < \mathsf{cof}(\mathcal{M})}$ we introduce new cardinal invariants ${\mathfrak{r}_{pair}}$ and ${\mathfrak{s}_{pair}}$ . We also study the relation between ${\mathfrak{r}_{pair}, \mathfrak{s}_{pair}}$ and other cardinal invariants. We show (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Countable filters on ω.Otmar Spinas - 1999 - Journal of Symbolic Logic 64 (2):469-478.
    Two countable filters on ω are incompatible if they have no common infinite pseudointersection. Letting α(P f ) denote the minimal size of a maximal uncountable family of pairwise incompatible countable filters on ω, we prove the consistency of t $.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Antichains of perfect and splitting trees.Paul Hein & Otmar Spinas - 2020 - Archive for Mathematical Logic 59 (3-4):367-388.
    We investigate uncountable maximal antichains of perfect trees and of splitting trees. We show that in the case of perfect trees they must have size of at least the dominating number, whereas for splitting trees they are of size at least \\), i.e. the covering coefficient of the meager ideal. Finally, we show that uncountable maximal antichains of superperfect trees are at least of size the bounding number; moreover we show that this is best possible.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Partitioning the Real Line Into Borel Sets.Will Brian - 2024 - Journal of Symbolic Logic 89 (2):549-568.
    For which infinite cardinals $\kappa $ is there a partition of the real line ${\mathbb R}$ into precisely $\kappa $ Borel sets? Work of Lusin, Souslin, and Hausdorff shows that ${\mathbb R}$ can be partitioned into $\aleph _1$ Borel sets. But other than this, we show that the spectrum of possible sizes of partitions of ${\mathbb R}$ into Borel sets can be fairly arbitrary. For example, given any $A \subseteq \omega $ with $0,1 \in A$, there is a forcing extension (...)
    Download  
     
    Export citation  
     
    Bookmark