Switch to: Citations

References in:

Partition numbers

Annals of Pure and Applied Logic 90 (1-3):243-262 (1997)

Add references

You must login to add references.
  1. Happy families.A. R. D. Mathias - 1977 - Annals of Mathematical Logic 12 (1):59.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • On the Consistency of Borel's Conjecture.Richard Laver & James E. Baumgartner - 1983 - Journal of Symbolic Logic 48 (3):882-883.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Countable filters on ω.Otmar Spinas - 1999 - Journal of Symbolic Logic 64 (2):469-478.
    Two countable filters on ω are incompatible if they have no common infinite pseudointersection. Letting α(P f ) denote the minimal size of a maximal uncountable family of pairwise incompatible countable filters on ω, we prove the consistency of t $.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proper Forcing.Saharon Shelah - 1985 - Journal of Symbolic Logic 50 (1):237-239.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Partitions and filters.P. Matet - 1986 - Journal of Symbolic Logic 51 (1):12-21.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Splittings.A. Kamburelis & B. W’Glorz - 1996 - Archive for Mathematical Logic 35 (4):263-277.
    We investigate some notions of splitting families and estimate sizes of the corresponding cardinal coefficients. In particular we solve a problem of P. Simon.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Adjoining dominating functions.James E. Baumgartner & Peter Dordal - 1985 - Journal of Symbolic Logic 50 (1):94-101.
    If dominating functions in ω ω are adjoined repeatedly over a model of GCH via a finite-support c.c.c. iteration, then in the resulting generic extension there are no long towers, every well-ordered unbounded family of increasing functions is a scale, and the splitting number s (and hence the distributivity number h) remains at ω 1.
    Download  
     
    Export citation  
     
    Bookmark   21 citations