Switch to: References

Add citations

You must login to add citations.
  1. Normality, Non-contamination and Logical Depth in Classical Natural Deduction.Marcello D’Agostino, Dov Gabbay & Sanjay Modgil - 2020 - Studia Logica 108 (2):291-357.
    In this paper we provide a detailed proof-theoretical analysis of a natural deduction system for classical propositional logic that (i) represents classical proofs in a more natural way than standard Gentzen-style natural deduction, (ii) admits of a simple normalization procedure such that normal proofs enjoy the Weak Subformula Property, (iii) provides the means to prove a Non-contamination Property of normal proofs that is not satisfied by normal proofs in the Gentzen tradition and is useful for applications, especially in formal argumentation, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Towards a canonical classical natural deduction system.José Espírito Santo - 2013 - Annals of Pure and Applied Logic 164 (6):618-650.
    Download  
     
    Export citation  
     
    Bookmark  
  • Normal natural deduction proofs (in classical logic).Wilfried Sieg & John Byrnes - 1998 - Studia Logica 60 (1):67-106.
    Natural deduction (for short: nd-) calculi have not been used systematically as a basis for automated theorem proving in classical logic. To remove objective obstacles to their use we describe (1) a method that allows to give semantic proofs of normal form theorems for nd-calculi and (2) a framework that allows to search directly for normal nd-proofs. Thus, one can try to answer the question: How do we bridge the gap between claims and assumptions in heuristically motivated ways? This informal (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Normalization Theorem for the First-Order Classical Natural Deduction with Disjunctive Syllogism.Seungrak Choi - 2021 - Korean Journal of Logic 2 (24):143-168.
    In the present paper, we prove the normalization theorem and the consistency of the first-order classical logic with disjunctive syllogism. First, we propose the natural deduction system SCD for classical propositional logic having rules for conjunction, implication, negation, and disjunction. The rules for disjunctive syllogism are regarded as the rules for disjunction. After we prove the normalization theorem and the consistency of SCD, we extend SCD to the system SPCD for the first-order classical logic with disjunctive syllogism. It can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Note on 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks'.Nils Kürbis - 2021 - Journal of Applied Logics 7 (8):2259-2261.
    This brief note corrects an error in one of the reduction steps in my paper 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks' published in the Journal of Applied Logics 8/2 (2021): 531-556.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Proof-Theoretic Approaches to the Paradoxes: Problems of Undergeneration and Overgeneration in the Prawitz-Tennant Analysis.Seungrak Choi - 2019 - Dissertation, Korea University
    In this dissertation, we shall investigate whether Tennant's criterion for paradoxicality(TCP) can be a correct criterion for genuine paradoxes and whether the requirement of a normal derivation(RND) can be a proof-theoretic solution to the paradoxes. Tennant’s criterion has two types of counterexamples. The one is a case which raises the problem of overgeneration that TCP makes a paradoxical derivation non-paradoxical. The other is one which generates the problem of undergeneration that TCP renders a non-paradoxical derivation paradoxical. Chapter 2 deals with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bilateralism does not provide a proof theoretic treatment of classical logic.Michael Gabbay - 2017 - Journal of Applied Logic 25:S108-S122.
    In this short paper I note that a key metatheorem does not hold for the bilateralist inferential framework: harmony does not entail consistency. I conclude that the requirement of harmony will not suffice for a bilateralist to maintain a proof theoretic account of classical logic. I conclude that a proof theoretic account of meaning based on the bilateralist framework has no natural way of distinguishing legitimate definitional inference rules from illegitimate ones (such as those for tonk). Finally, as an appendix (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Gentzen's proof systems: byproducts in a work of genius.Jan von Plato - 2012 - Bulletin of Symbolic Logic 18 (3):313-367.
    Gentzen's systems of natural deduction and sequent calculus were byproducts in his program of proving the consistency of arithmetic and analysis. It is suggested that the central component in his results on logical calculi was the use of a tree form for derivations. It allows the composition of derivations and the permutation of the order of application of rules, with a full control over the structure of derivations as a result. Recently found documents shed new light on the discovery of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A short proof of the strong normalization of classical natural deduction with disjunction.René David & Karim Nour - 2003 - Journal of Symbolic Logic 68 (4):1277-1288.
    We give a direct, purely arithmetical and elementary proof of the strong normalization of the cut-elimination procedure for full (i.e., in presence of all the usual connectives) classical natural deduction.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ekman’s Paradox.Peter Schroeder-Heister & Luca Tranchini - 2017 - Notre Dame Journal of Formal Logic 58 (4):567-581.
    Prawitz observed that Russell’s paradox in naive set theory yields a derivation of absurdity whose reduction sequence loops. Building on this observation, and based on numerous examples, Tennant claimed that this looping feature, or more generally, the fact that derivations of absurdity do not normalize, is characteristic of the paradoxes. Striking results by Ekman show that looping reduction sequences are already obtained in minimal propositional logic, when certain reduction steps, which are prima facie plausible, are considered in addition to the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Rule-Circularity and the Justification of Deduction.Neil Tennant - 2005 - Philosophical Quarterly 55 (221):625 - 648.
    I examine Paul Boghossian's recent attempt to argue for scepticism about logical rules. I argue that certain rule- and proof-theoretic considerations can avert such scepticism. Boghossian's 'Tonk Argument' seeks to justify the rule of tonk-introduction by using the rule itself. The argument is subjected here to more detailed proof-theoretic scrutiny than Boghossian undertook. Its sole axiom, the so-called Meaning Postulate for tonk, is shown to be false or devoid of content. It is also shown that the rules of Disquotation and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Rule-circularity and the justification of deduction.By Neil Tennant - 2005 - Philosophical Quarterly 55 (221):625–648.
    I examine Paul Boghossian's recent attempt to argue for scepticism about logical rules. I argue that certain rule- and proof-theoretic considerations can avert such scepticism. Boghossian's 'Tonk Argument' seeks to justify the rule of tonk-introduction by using the rule itself. The argument is subjected here to more detailed proof-theoretic scrutiny than Boghossian undertook. Its sole axiom, the so-called Meaning Postulate for tonk, is shown to be false or devoid of content. It is also shown that the rules of Disquotation and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Cut Elimination and Normalization for Generalized Single and Multi-Conclusion Sequent and Natural Deduction Calculi.Richard Zach - 2021 - Review of Symbolic Logic 14 (3):645-686.
    Any set of truth-functional connectives has sequent calculus rules that can be generated systematically from the truth tables of the connectives. Such a sequent calculus gives rise to a multi-conclusion natural deduction system and to a version of Parigot’s free deduction. The elimination rules are “general,” but can be systematically simplified. Cut-elimination and normalization hold. Restriction to a single formula in the succedent yields intuitionistic versions of these systems. The rules also yield generalized lambda calculi providing proof terms for natural (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Liar-type paradoxes and intuitionistic natural deduction systems.Seungrak Choi - 2018 - Korean Journal of Logic 21 (1):59-96.
    It is often said that in a purely formal perspective, intuitionistic logic has no obvious advantage to deal with the liar-type paradoxes. In this paper, we will argue that the standard intuitionistic natural deduction systems are vulnerable to the liar-type paradoxes in the sense that the acceptance of the liar-type sentences results in inference to absurdity (⊥). The result shows that the restriction of the Double Negation Elimination (DNE) fails to block the inference to ⊥. It is, however, not the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Full classical S5 in natural deduction with weak normalization.Ana Teresa Martins & Lilia Ramalho Martins - 2008 - Annals of Pure and Applied Logic 152 (1):132-147.
    Natural deduction systems for classical, intuitionistic and modal logics were deeply investigated by Prawitz [D. Prawitz, Natural Deduction: A Proof-theoretical Study, in: Stockholm Studies in Philosophy, vol. 3, Almqvist and Wiksell, Stockholm, 1965. Reprinted at: Dover Publications, Dover Books on Mathematics, 2006] from a proof-theoretical perspective. Prawitz proved weak normalization for classical logic only for a language without logical or, there exists and with a restricted application of reduction ad absurdum. Reduction steps related to logical or, there exists and classical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Subformula and separation properties in natural deduction via small Kripke models: Subformula and separation properties.Peter Milne - 2010 - Review of Symbolic Logic 3 (2):175-227.
    Various natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid to which properties of theories result in the presence of which rules of inference, and to restrictions on the sets of formulas to which the rules may be employed, restrictions (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Harmonising harmony.Luca Tranchini - 2015 - Review of Symbolic Logic 8 (3):411-423.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Normal derivability in classical natural deduction.Jan Von Plato & Annika Siders - 2012 - Review of Symbolic Logic 5 (2):205-211.
    A normalization procedure is given for classical natural deduction with the standard rule of indirect proof applied to arbitrary formulas. For normal derivability and the subformula property, it is sufficient to permute down instances of indirect proof whenever they have been used for concluding a major premiss of an elimination rule. The result applies even to natural deduction for classical modal logic.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Postponement of $$mathsf {}$$ and Glivenko’s Theorem, Revisited.Giulio Guerrieri & Alberto Naibo - 2019 - Studia Logica 107 (1):109-144.
    We study how to postpone the application of the reductio ad absurdum rule ) in classical natural deduction. This technique is connected with two normalization strategies for classical logic, due to Prawitz and Seldin, respectively. We introduce a variant of Seldin’s strategy for the postponement of \, which induces a negative translation from classical to intuitionistic and minimal logic. Through this translation, Glivenko’s theorem from classical to intuitionistic and minimal logic is proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards a canonical classical natural deduction system.José Santo - 2013 - Annals of Pure and Applied Logic 164 (6):618-650.
    This paper studies a new classical natural deduction system, presented as a typed calculus named View the MathML sourceλ̲μlet. It is designed to be isomorphic to Curien and Herbelinʼs View the MathML sourceλ¯μμ˜-calculus, both at the level of proofs and reduction, and the isomorphism is based on the correct correspondence between cut in sequent calculus, and substitution in natural deduction. It is a combination of Parigotʼs λμ-calculus with the idea of “coercion calculus” due to Cervesato and Pfenning, accommodating let-expressions in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-strictly positive fixed points for classical natural deduction.Ralph Matthes - 2005 - Annals of Pure and Applied Logic 133 (1):205-230.
    Termination for classical natural deduction is difficult in the presence of commuting/permutative conversions for disjunction. An approach based on reducibility candidates is presented that uses non-strictly positive inductive definitions.It covers second-order universal quantification and also the extension of the logic with fixed points of non-strictly positive operators, which appears to be a new result.Finally, the relation to Parigot’s strictly positive inductive definition of his set of reducibility candidates and to his notion of generalized reducibility candidates is explained.
    Download  
     
    Export citation  
     
    Bookmark   7 citations