- Anti‐Mitotic Recursively Enumerable Sets.Klaus Ambos-Spies - 1985 - Mathematical Logic Quarterly 31 (29-30):461-477.details
|
|
Intervals and sublattices of the R.E. weak truth table degrees, part I: Density.R. G. Downey - 1989 - Annals of Pure and Applied Logic 41 (1):1-26.details
|
|
Infima in the Recursively Enumerable Weak Truth Table Degrees.Rich Blaylock, Rod Downey & Steffen Lempp - 1997 - Notre Dame Journal of Formal Logic 38 (3):406-418.details
|
|
The recursively enumerable degrees have infinitely many one-types.Klaus Ambos-Spies & Robert I. Soare - 1989 - Annals of Pure and Applied Logic 44 (1-2):1-23.details
|
|
Structural interactions of the recursively enumerable T- and W-degrees.R. G. Downey & M. Stob - 1986 - Annals of Pure and Applied Logic 31:205-236.details
|
|
An extended Lachlan splitting theorem.Steffen Lempp & Sui Yuefei - 1996 - Annals of Pure and Applied Logic 79 (1):53-59.details
|
|
The discontinuity of splitting in the recursively enumerable degrees.S. Barry Cooper & Xiaoding Yi - 1995 - Archive for Mathematical Logic 34 (4):247-256.details
|
|
Continuity of capping in C bT.Paul Brodhead, Angsheng Li & Weilin Li - 2008 - Annals of Pure and Applied Logic 155 (1):1-15.details
|
|
Embeddings of N5 and the contiguous degrees.Klaus Ambos-Spies & Peter A. Fejer - 2001 - Annals of Pure and Applied Logic 112 (2-3):151-188.details
|
|
Classifications of degree classes associated with r.e. subspaces.R. G. Downey & J. B. Remmel - 1989 - Annals of Pure and Applied Logic 42 (2):105-124.details
|
|
Maximal contiguous degrees.Peter Cholak, Rod Downey & Stephen Walk - 2002 - Journal of Symbolic Logic 67 (1):409-437.details
|
|
(1 other version)A Contiguous Nonbranching Degree.Rod Downey - 1989 - Mathematical Logic Quarterly 35 (4):375-383.details
|
|
Bezem, M., see Barendsen, E.G. M. Bierman, M. DZamonja, S. Shelah, S. Feferman, G. Jiiger, M. A. Jahn, S. Lempp, Sui Yuefei, S. D. Leonhardi & D. Macpherson - 1996 - Annals of Pure and Applied Logic 79 (1):317.details
|
|