Switch to: References

Add citations

You must login to add citations.
  1. Sets, Logic, Computation: An Open Introduction to Metalogic.Richard Zach - 2019 - Open Logic Project.
    An introductory textbook on metalogic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. The audience is undergraduate students with some background in formal logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Intuitionistic Background of Gentzen's 1935 and 1936 Consistency Proofs and Their Philosophical Aspects.Yuta Takahashi - 2018 - Annals of the Japan Association for Philosophy of Science 27:1-26.
    Gentzen's three consistency proofs for elementary number theory have a common aim that originates from Hilbert's Program, namely, the aim to justify the application of classical reasoning to quantified propositions in elementary number theory. In addition to this common aim, Gentzen gave a “finitist” interpretation to every number-theoretic proposition with his 1935 and 1936 consistency proofs. In the present paper, we investigate the relationship of this interpretation with intuitionism in terms of the debate between the Hilbert School and the Brouwer (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Propositions in Prepositional Logic Provable Only by Indirect Proofs.Jan Ekman - 1998 - Mathematical Logic Quarterly 44 (1):69-91.
    In this paper it is shown that addition of certain reductions to the standard cut removing reductions of deductions in prepositional logic makes prepositional logic non-normalizable. From this follows that some provable propositions in prepositional logic has no direct proof.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On the Reality of Existence and Identity.Ian Hacking - 1978 - Canadian Journal of Philosophy 8 (4):613 - 632.
    “The confusion of a logical with a real predicate,” according to the Critique of Pure Reason, “is almost beyond correction”. Kant did not assert that existence is no predicate, but that it is only a “logical” one, and not a “real” one. Much the same thing has been said about identity, although Kant himself thought it is real and not logical. We have long lacked a rigorous criterion to distinguish real from logical predicates, and hence have not been able to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Inversion Principles.Enrico Moriconi & Laura Tesconi - 2008 - History and Philosophy of Logic 29 (2):103-113.
    The idea of an ?inversion principle?, and the name itself, originated in the work of Paul Lorenzen in the 1950s, as a method to generate new admissible rules within a certain syntactic context. Some fifteen years later, the idea was taken up by Dag Prawitz to devise a strategy of normalization for natural deduction calculi (this being an analogue of Gentzen's cut-elimination theorem for sequent calculi). Later, Prawitz used the inversion principle again, attributing it with a semantic role. Still working (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • What Types Should Not Be.Bruno Bentzen - 2020 - Philosophia Mathematica 28 (1):60-76.
    In a series of papers Ladyman and Presnell raise an interesting challenge of providing a pre-mathematical justification for homotopy type theory. In response, they propose what they claim to be an informal semantics for homotopy type theory where types and terms are regarded as mathematical concepts. The aim of this paper is to raise some issues which need to be resolved for the successful development of their types-as-concepts interpretation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Analysis of the Rules of Gentzen’s _Nj and Lj_.Mirjana Borisavljević - 2018 - Review of Symbolic Logic 11 (2):347-370.
    The connection between the rules and derivations of Gentzen’s calculiNJandLJwill be explained by several steps (i.e., systems), and an analysis of the well-known problems of the connection between reduction steps of normalization and cut elimination, from Zucker (1974) and Urban (2014), will be given.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Semantic bootstrapping of type-logical grammar.Sean A. Fulop - 2004 - Journal of Logic, Language and Information 14 (1):49-86.
    A two-stage procedure is described which induces type-logical grammar lexicons from sentences annotated with skeletal terms of the simply typed lambda calculus. First, a generalized formulae-as-types correspondence is exploited to obtain all the type-logical proofs of the sample sentences from their lambda terms. The resulting lexicons are then optimally unified. The first stage constitutes the semantic bootstrapping (Pinker, Language Learnability and Language Development, Harvard University Press, 1984), while the unification procedure of Buszkowski and Penn represents a first attempt at structure-dependent (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Method of Analysis: A Paradigm of Mathematical Reasoning?Jaakko Hintikka - 2012 - History and Philosophy of Logic 33 (1):49 - 67.
    The ancient Greek method of analysis has a rational reconstruction in the form of the tableau method of logical proof. This reconstruction shows that the format of analysis was largely determined by the requirement that proofs could be formulated by reference to geometrical figures. In problematic analysis, it has to be assumed not only that the theorem to be proved is true, but also that it is known. This means using epistemic logic, where instantiations of variables are typically allowed only (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Current Trends in Substructural Logics.Katalin Bimbó - 2015 - Journal of Philosophical Logic 44 (6):609-624.
    This paper briefly overviews some of the results and research directions. In the area of substructural logics from the last couple of decades. Substructural logics are understood here to include relevance logics, linear logic, variants of Lambek calculi and some other logics that are motivated by the idea of omitting some structural rules or making other structural changes in LK, the original sequent calculus for classical logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Science without reduction.Helmut F. Spinner - 1973 - Inquiry: An Interdisciplinary Journal of Philosophy 16 (1-4):16 – 94.
    The aim of this essay is a criticism of reductionism ? both in its ?static? interpretation (usually referred to as the layer model or level?picture of science) and in its ?dynamic? interpretation (as a theory of the growth of scientific knowledge), with emphasis on the latter ? from the point of view of Popperian fallibilism and Feyerabendian pluralism, but without being committed to the idiosyncrasies of these standpoints. In both aspects of criticism, the rejection is based on the proposal of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Cut as Consequence.Curtis Franks - 2010 - History and Philosophy of Logic 31 (4):349-379.
    The papers where Gerhard Gentzen introduced natural deduction and sequent calculi suggest that his conception of logic differs substantially from the now dominant views introduced by Hilbert, Gödel, Tarski, and others. Specifically, (1) the definitive features of natural deduction calculi allowed Gentzen to assert that his classical system nk is complete based purely on the sort of evidence that Hilbert called ?experimental?, and (2) the structure of the sequent calculi li and lk allowed Gentzen to conceptualize completeness as a question (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Horseshoe, hook, and relevance.B. J. Copeland - 1984 - Theoria 50 (2-3):148-164.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Early Structural Reasoning. Gentzen 1932.Enrico Moriconi - 2015 - Review of Symbolic Logic 8 (4):662-679.
    This paper is a study of the opening section of Gentzen’s first publication of 1932,Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen, a text which shows the relevance of Hertz’s work of the 1920’s for the young Gentzen. In fact, Gentzen borrowed from Hertz the analysis of the notion of consequence, which was given in terms of the rules of thinning (Verdünnung) and cut (Schnitt) on sequents (there called “sentences”(Sätze)). Moreover, following Hertz again, he also judged it necessary to justify (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Syntactical investigations intoBI logic andBB′I logic.Yuichi Komori - 1994 - Studia Logica 53 (3):397 - 416.
    In this note, we will study four implicational logicsB, BI, BB and BBI. In [5], Martin and Meyer proved that a formula is provable inBB if and only if is provable inBBI and is not of the form of » . Though it gave a positive solution to theP - W problem, their method was semantical and not easy to grasp. We shall give a syntactical proof of the syntactical relation betweenBB andBBI logics. It also includes a syntactical proof of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The impact of the lambda calculus in logic and computer science.Henk Barendregt - 1997 - Bulletin of Symbolic Logic 3 (2):181-215.
    One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Sequential Calculus for a First Order Infinitary Temporal Logic.Hiroya Kawai - 1987 - Mathematical Logic Quarterly 33 (5):423-432.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Grammar induction by unification of type-logical lexicons.Sean A. Fulop - 2010 - Journal of Logic, Language and Information 19 (3):353-381.
    A method is described for inducing a type-logical grammar from a sample of bare sentence trees which are annotated by lambda terms, called term-labelled trees . Any type logic from a permitted class of multimodal logics may be specified for use with the procedure, which induces the lexicon of the grammar including the grammatical categories. A first stage of semantic bootstrapping is performed, which induces a general form lexicon from the sample of term-labelled trees using Fulop’s (J Log Lang Inf (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Analyzing (and synthesizing) analysis.Jaakko Hintikka - unknown
    Equally surprisingly, Descartes’s paranoid belief was shared by several contemporary mathematicians, among them Isaac Barrow, John Wallis and Edmund Halley. (Huxley 1959, pp. 354-355.) In the light of our fuller knowledge of history it is easy to smile at Descartes. It has even been argued by Netz that analysis was in fact for ancient Greek geometers a method of presenting their results (see Netz 2000). But in a deeper sense Descartes perceived something interesting in the historical record. We are looking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The deduction rule and linear and near-linear proof simulations.Maria Luisa Bonet & Samuel R. Buss - 1993 - Journal of Symbolic Logic 58 (2):688-709.
    We introduce new proof systems for propositional logic, simple deduction Frege systems, general deduction Frege systems, and nested deduction Frege systems, which augment Frege systems with variants of the deduction rule. We give upper bounds on the lengths of proofs in Frege proof systems compared to lengths in these new systems. As applications we give near-linear simulations of the propositional Gentzen sequent calculus and the natural deduction calculus by Frege proofs. The length of a proof is the number of lines (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reading Gentzen's Three Consistency Proofs Uniformly.Ryota Akiyoshi & Yuta Takahashi - 2013 - Journal of the Japan Association for Philosophy of Science 41 (1):1-22.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Essay Review.Enrico Moriconi - 2017 - History and Philosophy of Logic 38 (2):1-11.
    Gerhard Gentzen was born on 24 November 1909. In 1929 he moved to Göttingen where he wrote his doctoral thesis, Untersuchungen über das logische Schliessen, under the supervision of P. Bernays. The...
    Download  
     
    Export citation  
     
    Bookmark  
  • Semantic pollution and syntactic purity.Stephen Read - 2015 - Review of Symbolic Logic 8 (4):649-661.
    Logical inferentialism claims that the meaning of the logical constants should be given, not model-theoretically, but by the rules of inference of a suitable calculus. It has been claimed that certain proof-theoretical systems, most particularly, labelled deductive systems for modal logic, are unsuitable, on the grounds that they are semantically polluted and suffer from an untoward intrusion of semantics into syntax. The charge is shown to be mistaken. It is argued on inferentialist grounds that labelled deductive systems are as syntactically (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Many-Valued Logics and Translations.Ítala M. Loffredo D'Ottaviano & Hércules de Araujo Feitosa - 1999 - Journal of Applied Non-Classical Logics 9 (1):121-140.
    This work presents the concepts of translation and conservative translation between logics. By using algebraic semantics we introduce several conservative translations involving the classical propositional calculus and the many-valued calculi of Post and Lukasiewicz.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Paul Weingartner and Hans-Peter Leeb, eds, Kreisel’s Interests: On the Foundations of Logic and Mathematics.Dag Prawitz - 2022 - Philosophia Mathematica 30 (1):121-126.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Review. [REVIEW]Andrew Powell - 1992 - British Journal for the Philosophy of Science 43 (2):245-262.
    Download  
     
    Export citation  
     
    Bookmark  
  • Semantic Values for Natural Deduction Derivations.Göran Sundholm - 2006 - Synthese 148 (3):623-638.
    Drawing upon Martin-Löf’s semantic framework for his constructive type theory, semantic values are assigned also to natural-deduction derivations, while observing the crucial distinction between consequence among propositions and inference among judgements. Derivations in Gentzen’s format with derivable formulae dependent upon open assumptions, stand, it is suggested, for proof-objects, whereas derivations in Gentzen’s sequential format are proof-acts.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)A Note on Gentzen's Decision Procedure for Intuitionistic Propositional Logic.Kosta Došen - 1987 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33 (5):453-456.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The continuous realizability of entailment.M. E. Szabo - 1983 - Mathematical Logic Quarterly 29 (4):219-233.
    Download  
     
    Export citation  
     
    Bookmark   2 citations