Switch to: References

Citations of:

Zermelo's Conception of Set Theory and Reflection Principles

In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press (1998)

Add citations

You must login to add citations.
  1. Modal Structuralism and Reflection.Sam Roberts - 2019 - Review of Symbolic Logic 12 (4):823-860.
    Modal structuralism promises an interpretation of set theory that avoids commitment to abstracta. This article investigates its underlying assumptions. In the first part, I start by highlighting some shortcomings of the standard axiomatisation of modal structuralism, and propose a new axiomatisation I call MSST (for Modal Structural Set Theory). The main theorem is that MSST interprets exactly Zermelo set theory plus the claim that every set is in some inaccessible rank of the cumulative hierarchy. In the second part of the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Reply to Crispin Wright and Richard Zach.Ian Rumfitt - 2018 - Philosophical Studies 175 (8):2091-2103.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Richness and Reflection.Neil Barton - 2016 - Philosophia Mathematica 24 (3):330-359.
    A pervasive thought in contemporary philosophy of mathematics is that in order to justify reflection principles, one must hold universism: the view that there is a single universe of pure sets. I challenge this kind of reasoning by contrasting universism with a Zermelian form of multiversism. I argue that if extant justifications of reflection principles using notions of richness are acceptable for the universist, then the Zermelian can use similar justifications. However, I note that for some forms of richness argument, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Numbers and Everything.Gonçalo Santos - 2013 - Philosophia Mathematica 21 (3):297-308.
    I begin by drawing a parallel between the intuitionistic understanding of quantification over all natural numbers and the generality relativist understanding of quantification over absolutely everything. I then argue that adoption of an intuitionistic reading of relativism not only provides an immediate reply to the absolutist's charge of incoherence but it also throws a new light on the debates surrounding absolute generality.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Boolos on the justification of set theory.Alexander Paseau - 2007 - Philosophia Mathematica 15 (1):30-53.
    George Boolos has argued that the iterative conception of set justifies most, but not all, the ZFC axioms, and that a second conception of set, the Frege-von Neumann conception (FN), justifies the remaining axioms. This article challenges Boolos's claim that FN does better than the iterative conception at justifying the axioms in question.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The modal logic of set-theoretic potentialism and the potentialist maximality principles.Joel David Hamkins & Øystein Linnebo - 2022 - Review of Symbolic Logic 15 (1):1-35.
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism, Grothendieck–Zermelo potentialism, transitive-set potentialism, forcing potentialism, countable-transitive-model potentialism, countable-model potentialism, and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • How high the sky? Rumfitt on the (putative) indeterminacy of the set-theoretic universe.Crispin Wright - 2018 - Philosophical Studies 175 (8):2067-2078.
    This comment focuses on Chapter 9 of The Boundary Stones of Thought and the argument, due to William Tait, that Ian Rumfitt there sustains for the indeterminacy of set. I argue that Michael Dummett’s argument, based on the notion of indefinite extensibility and set aside by Rumfitt, provides a more powerful basis for the same conclusion. In addition, I outline two difficulties for the way Rumfitt attempts to save classical logic from acknowledged failures of the principle of bivalence, one specifically (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Strong Reflection Principle.Sam Roberts - 2017 - Review of Symbolic Logic 10 (4):651-662.
    This article introduces a new reflection principle. It is based on the idea that whatever is true in all entities of some kind is also true in a set-sized collection of them. Unlike standard reflection principles, it does not re-interpret parameters or predicates. This allows it to be both consistent in all higher-order languages and remarkably strong. For example, I show that in the language of second-order set theory with predicates for a satisfaction relation, it is consistent relative to the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Maximality Principles in the Hyperuniverse Programme.Sy-David Friedman & Claudio Ternullo - 2020 - Foundations of Science 28 (1):287-305.
    In recent years, one of the main thrusts of set-theoretic research has been the investigation of maximality principles for V, the universe of sets. The Hyperuniverse Programme (HP) has formulated several maximality principles, which express the maximality of V both in height and width. The paper provides an overview of the principles which have been investigated so far in the programme, as well as of the logical and model-theoretic tools which are needed to formulate them mathematically, and also briefly shows (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On adopting Kripke semantics in set theory.Luca Incurvati - 2008 - Review of Symbolic Logic 1 (1):81-96.
    Several philosophers have argued that the logic of set theory should be intuitionistic on the grounds that the open-endedness of the set concept demands the adoption of a nonclassical semantics. This paper examines to what extent adopting such a semantics has revisionary consequences for the logic of our set-theoretic reasoning. It is shown that in the context of the axioms of standard set theory, an intuitionistic semantics sanctions a classical logic. A Kripke semantics in the context of a weaker axiomatization (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Should the logic of set theory be intuitionistic?Alexander Paseau - 2001 - Proceedings of the Aristotelian Society 101 (3):369–378.
    It is commonly assumed that classical logic is the embodiment of a realist ontology. In “Sets and Semantics”, however, Jonathan Lear challenged this assumption in the particular case of set theory, arguing that even if one is a set-theoretic Platonist, due attention to a special feature of set theory leads to the conclusion that the correct logic for it is intuitionistic. The feature of set theory Lear appeals to is the open-endedness of the concept of set. This article advances reasons (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The open-endedness of the set concept and the semantics of set theory.A. Paseau - 2003 - Synthese 135 (3):379 - 399.
    Some philosophers have argued that the open-endedness of the set concept has revisionary consequences for the semantics and logic of set theory. I consider (several variants of) an argument for this claim, premissed on the view that quantification in mathematics cannot outrun our conceptual abilities. The argument urges a non-standard semantics for set theory that allegedly sanctions a non-classical logic. I show that the views about quantification the argument relies on turn out to sanction a classical semantics and logic after (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Frege Meets Zermelo: A Perspective on Ineffability and Reflection.Stewart Shapiro - 2008 - Review of Symbolic Logic 1 (2):241-266.
    1. Philosophical background: iteration, ineffability, reflection. There are at least two heuristic motivations for the axioms of standard set theory, by which we mean, as usual, first-order Zermelo–Fraenkel set theory with the axiom of choice (ZFC): the iterative conception and limitation of size (see Boolos, 1989). Each strand provides a rather hospitable environment for the hypothesis that the set-theoretic universe is ineffable, which is our target in this paper, although the motivation is different in each case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Zermelo: definiteness and the universe of definable sets.Heinz-Dieter Ebbinghaus - 2003 - History and Philosophy of Logic 24 (3):197-219.
    Using hitherto unpublished manuscripts from the Zermelo Nachlass, I describe the development of the notion of definiteness and the discussion about it, giving a conclusive picture of Zermelo's thoughts up to the late thirties. As it turns out, Zermelo's considerations about definiteness are intimately related to his concept of a Cantorian universe of categorically definable sets that may be considered an inner model of set theory in an ideationally given universe of classes.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Zermelo: Boundary numbers and domains of sets continued.Heinz-Dieter Ebbinghaus - 2006 - History and Philosophy of Logic 27 (4):285-306.
    Towards the end of his 1930 paper on boundary numbers and domains of sets Zermelo briefly discusses the questions of consistency and of the existence of an unbounded sequence of strongly inaccessible cardinals, deferring a detailed discussion to a later paper which never appeared. In a report to the Emergency Community of German Science from December 1930 about investigations in progress he mentions that some of the intended extensions of these topics had been worked out and were nearly ready for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation