Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Most Peers Don’t Believe It, Hence It Is Probably False.René van Woudenberg & Hans van Eyghen - 2017 - European Journal for Philosophy of Religion 9 (4):87-112.
    Rob Lovering has recently argued that since theists have been unable, by means of philosophical arguments, to convince 85 percent of professional philosophers that God exists, at least one of their defining beliefs must be either false or meaningless. This paper is a critical examination of his argument. First we present Lovering’s argument and point out its salient features. Next we explain why the argument’s conclusion is entirely acceptable for theists, even if, as we show, there are multiple problems with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Mathematical knowledge is context dependent.Benedikt LÖWE & Thomas MÜLLER - 2008 - Grazer Philosophische Studien 76 (1):91-107.
    We argue that mathematical knowledge is context dependent. Our main argument is that on pain of distorting mathematical practice, one must analyse the notion of having available a proof, which supplies justification in mathematics, in a context dependent way.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proofs, Mathematical Practice and Argumentation.Begoña Carrascal - 2015 - Argumentation 29 (3):305-324.
    In argumentation studies, almost all theoretical proposals are applied, in general, to the analysis and evaluation of argumentative products, but little attention has been paid to the creative process of arguing. Mathematics can be used as a clear example to illustrate some significant theoretical differences between mathematical practice and the products of it, to differentiate the distinct components of the arguments, and to emphasize the need to address the different types of argumentative discourse and argumentative situation in the practice. I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rigour, Proof and Soundness.Oliver M. W. Tatton-Brown - 2020 - Dissertation, University of Bristol
    The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation and Understanding in a Model-Based Model of Cognition.Karlis Podnieks - manuscript
    This article is an experiment. Consider a minimalist model of cognition (models, means of model-building and history of their evolution). In this model, explanation could be defined as a means allowing to advance: production of models and means of model-building (thus, yielding 1st class understanding), exploration and use of them (2nd class), and/or teaching (3rd class). At minimum, 3rd class understanding is necessary for an explanation to be respected.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computers in mathematical inquiry.Jeremy Avigad - manuscript
    In Section 2, I survey some of the ways that computers are used in mathematics. These raise questions that seem to have a generally epistemological character, although they do not fall squarely under a traditional philosophical purview. The goal of this article is to try to articulate some of these questions more clearly, and assess the philosophical methods that may be brought to bear. In Section 3, I note that most of the issues can be classified under two headings: some (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations