Switch to: References

Add citations

You must login to add citations.
  1. Bimodal logics for extensions of arithmetical theories.Lev D. Beklemishev - 1996 - Journal of Symbolic Logic 61 (1):91-124.
    We characterize the bimodal provability logics for certain natural (classes of) pairs of recursively enumerable theories, mostly related to fragments of arithmetic. For example, we shall give axiomatizations, decision procedures, and introduce natural Kripke semantics for the provability logics of (IΔ 0 + EXP, PRA); (PRA, IΣ 1 ); (IΣ m , IΣ n ) for $1 \leq m etc. For the case of finitely axiomatized extensions of theories these results are extended to modal logics with propositional constants.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The absorption law: Or: how to Kreisel a Hilbert–Bernays–Löb.Albert Visser - 2020 - Archive for Mathematical Logic 60 (3-4):441-468.
    In this paper, we show how to construct for a given consistent theory U a $$\varSigma ^0_1$$ Σ 1 0 -predicate that both satisfies the Löb Conditions and the Kreisel Condition—even if U is unsound. We do this in such a way that U itself can verify satisfaction of an internal version of the Kreisel Condition.
    Download  
     
    Export citation  
     
    Bookmark  
  • Uniform Density in Lindenbaum Algebras.V. Yu Shavrukov & Albert Visser - 2014 - Notre Dame Journal of Formal Logic 55 (4):569-582.
    In this paper we prove that the preordering $\lesssim $ of provable implication over any recursively enumerable theory $T$ containing a modicum of arithmetic is uniformly dense. This means that we can find a recursive extensional density function $F$ for $\lesssim $. A recursive function $F$ is a density function if it computes, for $A$ and $B$ with $A\lnsim B$, an element $C$ such that $A\lnsim C\lnsim B$. The function is extensional if it preserves $T$-provable equivalence. Secondly, we prove a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Another look at the second incompleteness theorem.Albert Visser - 2020 - Review of Symbolic Logic 13 (2):269-295.
    In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is fixed and the representation of the set of axioms varies. We extend the Feferman framework in one important point: we allow the interpretation of number theory to vary.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Arithmetical Soundness and Completeness for $$\varvec{\Sigma }_{\varvec{2}}$$ Numerations.Taishi Kurahashi - 2018 - Studia Logica 106 (6):1181-1196.
    We prove that for each recursively axiomatized consistent extension T of Peano Arithmetic and \, there exists a \ numeration \\) of T such that the provability logic of the provability predicate \\) naturally constructed from \\) is exactly \ \rightarrow \Box p\). This settles Sacchetti’s problem affirmatively.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Arithmetical Completeness Theorem for Modal Logic $$mathsf{}$$.Taishi Kurahashi - 2018 - Studia Logica 106 (2):219-235.
    We prove that for any recursively axiomatized consistent extension T of Peano Arithmetic, there exists a \ provability predicate of T whose provability logic is precisely the modal logic \. For this purpose, we introduce a new bimodal logic \, and prove the Kripke completeness theorem and the uniform arithmetical completeness theorem for \.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Franco Montagna’s Work on Provability Logic and Many-valued Logic.Lev Beklemishev & Tommaso Flaminio - 2016 - Studia Logica 104 (1):1-46.
    Franco Montagna, a prominent logician and one of the leaders of the Italian school on Mathematical Logic, passed away on February 18, 2015. We survey some of his results and ideas in the two disciplines he greatly contributed along his career: provability logic and many-valued logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rosser Provability and Normal Modal Logics.Taishi Kurahashi - 2020 - Studia Logica 108 (3):597-617.
    In this paper, we investigate Rosser provability predicates whose provability logics are normal modal logics. First, we prove that there exists a Rosser provability predicate whose provability logic is exactly the normal modal logic \. Secondly, we introduce a new normal modal logic \ which is a proper extension of \, and prove that there exists a Rosser provability predicate whose provability logic includes \.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Meeting on Neutral Ground. A Reflection on Man-Machine Contests.Albert Visser - 2020 - Studia Semiotyczne 34 (1):279-294.
    We argue that thinking of the man-machine comparison in terms of a contest involves, in a reasonable scenario, a criterion of success that is neutral. This is because we want to avoid a petitio principii. We submit, however, that, by looking at things this way, one makes the most essential human things invisible. Thus, in a sense, the contest approach is self-defeating.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Transductions in arithmetic.Albert Visser - 2016 - Annals of Pure and Applied Logic 167 (3):211-234.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Self-Reference in Arithmetic II.Volker Halbach & Albert Visser - 2014 - Review of Symbolic Logic 7 (4):692-712.
    In this sequel toSelf-reference in arithmetic Iwe continue our discussion of the question: What does it mean for a sentence of arithmetic to ascribe to itself a property? We investigate how the properties of the supposedly self-referential sentences depend on the chosen coding, the formulae expressing the properties and the way a fixed point for the expressing formulae are obtained. In this second part we look at some further examples. In particular, we study sentences apparently expressing their Rosser-provability, their own${\rm{\Sigma (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Interpretability suprema in Peano Arithmetic.Paula Henk & Albert Visser - 2017 - Archive for Mathematical Logic 56 (5-6):555-584.
    This paper develops the philosophy and technology needed for adding a supremum operator to the interpretability logic ILM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ILM}$$\end{document} of Peano Arithmetic. It is well-known that any theories extending PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PA}$$\end{document} have a supremum in the interpretability ordering. While provable in PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PA}$$\end{document}, this fact is not reflected in the theorems of the modal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation