Switch to: References

Add citations

You must login to add citations.
  1. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Teaching and Learning Guide for: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathematical Explanation: A Contextual Approach.Sven Delarivière, Joachim Frans & Bart Van Kerkhove - 2017 - Journal of Indian Council of Philosophical Research 34 (2):309-329.
    PurposeIn this article, we aim to present and defend a contextual approach to mathematical explanation.MethodTo do this, we introduce an epistemic reading of mathematical explanation.ResultsThe epistemic reading not only clarifies the link between mathematical explanation and mathematical understanding, but also allows us to explicate some contextual factors governing explanation. We then show how several accounts of mathematical explanation can be read in this approach.ConclusionThe contextual approach defended here clears up the notion of explanation and pushes us towards a pluralist vision (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Is Mathematics a Domain for Philosophers of Explanation?Erik Weber & Joachim Frans - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (1):125-142.
    In this paper we discuss three interrelated questions. First: is explanation in mathematics a topic that philosophers of mathematics can legitimately investigate? Second: are the specific aims that philosophers of mathematical explanation set themselves legitimate? Finally: are the models of explanation developed by philosophers of science useful tools for philosophers of mathematical explanation? We argue that the answer to all these questions is positive. Our views are completely opposite to the views that Mark Zelcer has put forward recently. Throughout this (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mathematical Explanations: An Analysis Via Formal Proofs and Conceptual Complexity.Francesca Poggiolesi - 2024 - Philosophia Mathematica 32 (2):145-176.
    This paper studies internal (or intra-)mathematical explanations, namely those proofs of mathematical theorems that seem to explain the theorem they prove. The goal of the paper is a rigorous analysis of these explanations. This will be done in two steps. First, we will show how to move from informal proofs of mathematical theorems to a formal presentation that involves proof trees, together with a decomposition of their elements; secondly we will show that those mathematical proofs that are regarded as having (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Do mathematical explanations have instrumental value?Rebecca Lea Morris - 2019 - Synthese (2):1-20.
    Scientific explanations are widely recognized to have instrumental value by helping scientists make predictions and control their environment. In this paper I raise, and provide a first analysis of, the question whether explanatory proofs in mathematics have analogous instrumental value. I first identify an important goal in mathematical practice: reusing resources from existing proofs to solve new problems. I then consider the more specific question: do explanatory proofs have instrumental value by promoting reuse of the resources they contain? In general, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Learning from Euler. From Mathematical Practice to Mathematical Explanation.Daniele Molinini - 2012 - Philosophia Scientiae 16 (1):105-127.
    Dans son « Découverte d'un nouveau principe de mécanique » (1750) Euler a donné, pour la première fois, une preuve du théorème qu'on appelle aujourd'hui le Théorème d'Euler. Dans cet article je vais me concentrer sur la preuve originale d'Euler, et je vais montrer comment la pratique mathématique d Euler peut éclairer le débat philosophique sur la notion de preuves explicatives en mathématiques. En particulier, je montrerai comment l'un des modèles d'explication mathématique les plus connus, celui proposé par Mark Steiner (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Unificatory Understanding and Explanatory Proofs.Joachim Frans - 2020 - Foundations of Science 26 (4):1105-1127.
    One of the central aims of the philosophical analysis of mathematical explanation is to determine how one can distinguish explanatory proofs from non-explanatory proofs. In this paper, I take a closer look at the current status of the debate, and what the challenges for the philosophical analysis of explanatory proofs are. In order to provide an answer to these challenges, I suggest we start from analysing the concept understanding. More precisely, I will defend four claims: understanding is a condition for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mechanistic Explanation and Explanatory Proofs in Mathematics.Joachim Frans & Erik Weber - 2014 - Philosophia Mathematica 22 (2):231-248.
    Although there is a consensus among philosophers of mathematics and mathematicians that mathematical explanations exist, only a few authors have proposed accounts of explanation in mathematics. These accounts fit into the unificationist or top-down approach to explanation. We argue that these models can be complemented by a bottom-up approach to explanation in mathematics. We introduce the mechanistic model of explanation in science and discuss the possibility of using this model in mathematics, arguing that using it does not presuppose a Platonist (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations