Switch to: References

Citations of:

On the harmless impredicativity of N=('Hume's Principle')

In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press. pp. 339--68 (1998)

Add citations

You must login to add citations.
  1. The Metametaphysics of Neo-Fregeanism.Matti Eklund - 2020 - In Ricki Bliss & James Miller (eds.), The Routledge Handbook of Metametaphysics. New York, NY: Routledge.
    Download  
     
    Export citation  
     
    Bookmark  
  • Grounding and auto-abstraction.Luca Zanetti - 2020 - Synthese 198 (11):10187-10205.
    Abstraction principles and grounding can be combined in a natural way Modality: metaphysics, logic, and epistemology, Oxford University Press, Oxford, pp 109–136, 2010; Schwartzkopff in Grazer philosophische studien 82:353–373, 2011). However, some ground-theoretic abstraction principles entail that there are circles of partial ground :775–801, 2017). I call this problem auto-abstraction. In this paper I sketch a solution. Sections 1 and 2 are introductory. In Sect. 3 I start comparing different solutions to the problem. In Sect. 4 I contend that the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abstractionism and Mathematical Singular Reference.Bahram Assadian - 2019 - Philosophia Mathematica 27 (2):177-198.
    ABSTRACT Is it possible to effect singular reference to mathematical objects in the abstractionist framework? I will argue that even if mathematical expressions pass the relevant syntactic and inferential tests to qualify as singular terms, that does not mean that their semantic function is to refer to a particular object. I will defend two arguments leading to this claim: the permutation argument for the referential indeterminacy of mathematical terms, and the argument from the semantic idleness of the terms introduced by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)N eo-F regeanism and Q uantifier V ariance.Katherine Hawley - 2007 - Aristotelian Society Supplementary Volume 81 (1):233-249.
    In his paper in the same volume, Sider argues that, of maximalism and quantifier variance, the latter promises to let us make better sense of neo-Fregeanism. I argue that neo-Fregeans should, and seemingly do, reject quantifier variance. If they must choose between these two options, they should choose maximalism.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Term Models for Abstraction Principles.Leon Horsten & Øystein Linnebo - 2016 - Journal of Philosophical Logic 45 (1):1-23.
    Kripke’s notion of groundedness plays a central role in many responses to the semantic paradoxes. Can the notion of groundedness be brought to bear on the paradoxes that arise in connection with abstraction principles? We explore a version of grounded abstraction whereby term models are built up in a ‘grounded’ manner. The results are mixed. Our method solves a problem concerning circularity and yields a ‘grounded’ model for the predicative theory based on Frege’s Basic Law V. However, the method is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Dilemma for Neo-Fregeanism.Robert Trueman - 2014 - Philosophia Mathematica 22 (3):361-379.
    Neo-Fregeans need their stipulation of Hume's Principle — $NxFx=NxGx \leftrightarrow \exists R (Fx \,1\hbox {-}1_R\, Gx)$ — to do two things. First, it must implicitly define the term-forming operator ‘Nx…x…’, and second it must guarantee that Hume's Principle as a whole is true. I distinguish two senses in which the neo-Fregeans might ‘stipulate’ Hume's Principle, and argue that while one sort of stipulation fixes a meaning for ‘Nx…x…’ and the other guarantees the truth of Hume's Principle, neither does both.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Frege’s Logicism and the Neo-Fregean Project.Matthias Schirn - 2014 - Axiomathes 24 (2):207-243.
    Neo-logicism is, not least in the light of Frege’s logicist programme, an important topic in the current philosophy of mathematics. In this essay, I critically discuss a number of issues that I consider to be relevant for both Frege’s logicism and neo-logicism. I begin with a brief introduction into Wright’s neo-Fregean project and mention the main objections that he faces. In Sect. 2, I discuss the Julius Caesar problem and its possible Fregean and neo-Fregean solution. In Sect. 3, I raise (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On finite hume.Fraser Macbride - 2000 - Philosophia Mathematica 8 (2):150-159.
    Neo-Fregeanism contends that knowledge of arithmetic may be acquired by second-order logical reflection upon Hume's principle. Heck argues that Hume's principle doesn't inform ordinary arithmetical reasoning and so knowledge derived from it cannot be genuinely arithmetical. To suppose otherwise, Heck claims, is to fail to comprehend the magnitude of Cantor's conceptual contribution to mathematics. Heck recommends that finite Hume's principle be employed instead to generate arithmetical knowledge. But a better understanding of Cantor's contribution is achieved if it is supposed that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Abstraction without exceptions.Luca Zanetti - 2021 - Philosophical Studies 178 (10):3197-3216.
    Wright claims that “the epistemology of good abstraction principles should be assimilated to that of basic principles of logical inference”. In this paper I follow Wright’s recommendation, but I consider a different epistemology of logic, namely anti-exceptionalism. Anti-exceptionalism’s main contention is that logic is not a priori, and that the choice between rival logics should be based on abductive criteria such as simplicity, adequacy to the data, strength, fruitfulness, and consistency. This paper’s goal is to lay down the foundations for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The good, the bad and the ugly.Philip Ebert & Stewart Shapiro - 2009 - Synthese 170 (3):415-441.
    This paper discusses the neo-logicist approach to the foundations of mathematics by highlighting an issue that arises from looking at the Bad Company objection from an epistemological perspective. For the most part, our issue is independent of the details of any resolution of the Bad Company objection and, as we will show, it concerns other foundational approaches in the philosophy of mathematics. In the first two sections, we give a brief overview of the "Scottish" neo-logicist school, present a generic form (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Identity and Sortals.Ansten Klev - 2017 - Erkenntnis 82 (1):1-16.
    According to the sortal conception of the universe of individuals every individual falls under a highest sortal, or category. It is argued here that on this conception the identity relation is defined between individuals a and b if and only if a and b fall under a common category. Identity must therefore be regarded as a relation of the form \, with three arguments x, y, and Z, where Z ranges over categories, and where the range of x and y (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical constants.John MacFarlane - 2008 - Mind.
    Logic is usually thought to concern itself only with features that sentences and arguments possess in virtue of their logical structures or forms. The logical form of a sentence or argument is determined by its syntactic or semantic structure and by the placement of certain expressions called “logical constants.”[1] Thus, for example, the sentences Every boy loves some girl. and Some boy loves every girl. are thought to differ in logical form, even though they share a common syntactic and semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • ‘Neo-logicist‘ logic is not epistemically innocent.Stewart Shapiro & Alan Weir - 2000 - Philosophia Mathematica 8 (2):160--189.
    The neo-logicist argues tliat standard mathematics can be derived by purely logical means from abstraction principles—such as Hume's Principle— which are held to lie 'epistcmically innocent'. We show that the second-order axiom of comprehension applied to non-instantiated properties and the standard first-order existential instantiation and universal elimination principles are essential for the derivation of key results, specifically a theorem of infinity, but have not been shown to be epistemically innocent. We conclude that the epistemic innocence of mathematics has not been (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Speaking with Shadows: A Study of Neo‐Logicism.Fraser MacBride - 2003 - British Journal for the Philosophy of Science 54 (1):103-163.
    According to the species of neo-logicism advanced by Hale and Wright, mathematical knowledge is essentially logical knowledge. Their view is found to be best understood as a set of related though independent theses: (1) neo-fregeanism-a general conception of the relation between language and reality; (2) the method of abstraction-a particular method for introducing concepts into language; (3) the scope of logic-second-order logic is logic. The criticisms of Boolos, Dummett, Field and Quine (amongst others) of these theses are explicated and assessed. (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • New V, ZF and Abstraction.Stewart Shapiro & Alan Weir - 1999 - Philosophia Mathematica 7 (3):293-321.
    We examine George Boolos's proposed abstraction principle for extensions based on the limitation-of-size conception, New V, from several perspectives. Crispin Wright once suggested that New V could serve as part of a neo-logicist development of real analysis. We show that it fails both of the conservativeness criteria for abstraction principles that Wright proposes. Thus, we support Boolos against Wright. We also show that, when combined with the axioms for Boolos's iterative notion of set, New V yields a system equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Rumfitt on the logic of set theory.Øystein Linnebo - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (7):826-841.
    ABSTRACTAccording to a famous argument by Dummett, the concept of set is indefinitely extensible, and the logic appropriate for reasoning about the instances of any such concept is intuitionistic, not classical. But Dummett's argument is widely regarded as obscure. This note explains how the final chapter of Rumfitt's important new book advances our understanding of Dummett's argument, but it also points out some problems and unanswered questions. Finally, Rumfitt's reconstruction of Dummett's argument is contrasted with my own preferred alternative.
    Download  
     
    Export citation  
     
    Bookmark  
  • Soft Axiomatisation: John von Neumann on Method and von Neumann's Method in the Physical Sciences.Miklós Rédei & Michael Stöltzner - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 235--249.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Company Kept by Cut Abstraction (and its Relatives).S. Shapiro - 2011 - Philosophia Mathematica 19 (2):107-138.
    This article concerns the ongoing neo-logicist program in the philosophy of mathematics. The enterprise began life, in something close to its present form, with Crispin Wright’s seminal [1983]. It was bolstered when Bob Hale [1987] joined the fray on Wright’s behalf and it continues through many extensions, objections, and replies to objections . The overall plan is to develop branches of established mathematics using abstraction principles in the form: Formula where a and b are variables of a given type , (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Logicism and Neologicism.Neil Tennant - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The neo-Fregean program in the philosophy of arithmetic.William Demopoulos - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 87--112.
    Download  
     
    Export citation  
     
    Bookmark   1 citation