Switch to: References

Add citations

You must login to add citations.
  1. Sciences of Observation.Chris Fields - 2018 - Philosophies 3 (4):29.
    Multiple sciences have converged, in the past two decades, on a hitherto mostly unremarked question: what is observation? Here, I examine this evolution, focusing on three sciences: physics, especially quantum information theory, developmental biology, especially its molecular and “evo-devo” branches, and cognitive science, especially perceptual psychology and robotics. I trace the history of this question to the late 19th century, and through the conceptual revolutions of the 20th century. I show how the increasing interdisciplinary focus on the process of extracting (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Entanglement, Upper Probabilities and Decoherence in Quantum Mechanics.Patrick Suppes & Stephan Hartmann - 2009 - In Mauro Dorato et al (ed.), EPSA 2007: Launch of the European Philosophy of Science Association. Springer. pp. 93--103.
    Quantum mechanical entangled configurations of particles that do not satisfy Bell’s inequalities, or equivalently, do not have a joint probability distribution, are familiar in the foundational literature of quantum mechanics. Nonexistence of a joint probability measure for the correlations predicted by quantum mechanics is itself equivalent to the nonexistence of local hidden variables that account for the correlations (for a proof of this equivalence, see Suppes and Zanotti, 1981). From a philosophical standpoint it is natural to ask what sort of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, but has (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the plurality of quantum theories: Quantum theory as a framework and its implications for the quantum measurement problem.David Wallace - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    `Quantum theory' is not a single physical theory but a framework in which many different concrete theories fit. As such, a solution to the quantum measurement problem ought to provide a recipe to interpret each such concrete theory, in a mutually consistent way. But with the exception of the Everett interpretation, the mainextant solutions either try to make sense of the abstract framework as if it were concrete, or else interpret one particular quantum theory under the fiction that it is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Quantum theory and time asymmetry.H. D. Zeh - 1979 - Foundations of Physics 9 (11-12):803-818.
    The relation between quantum measurement and thermodynamically irreversible processes is investigated. The reduction of the state vector is fundamentally asymmetric in time and shows an observer-relatedness which may explain the double interpretation of the state vector as a representation of physical states as well as ofinformation about physical states. The concept of relevance being used in all statistical theories of irreversible thermodynamics is demonstrated to be based on the same observer-relatedness. Quantum theories of irreversible processes implicitly use an objectivized process (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The decoherence puzzle.P. C. E. Stamp - 2006 - Studies in History and Philosophy of Modern Physics 37 (3):467-497.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • An Abstract Theory of Physical Measurements.Pedro Resende - 2021 - Foundations of Physics 51 (6):1-26.
    The question of what should be meant by a measurement is tackled from a mathematical perspective whose physical interpretation is that a measurement is a fundamental process via which a finite amount of classical information is produced. This translates into an algebraic and topological definition of measurement space that caters for the distinction between quantum and classical measurements and allows a notion of observer to be derived.
    Download  
     
    Export citation  
     
    Bookmark  
  • On a possibility to find experimental evidence for the many-worlds interpretation of quantum mechanics.R. Plaga - 1997 - Foundations of Physics 27 (4):559-577.
    The many-worlds interpretation of quantum mechanics predicts the formation of distinct parallel worlds as a result, of a quantum mechanical measurement. Communication among these parallel worlds would experimentally rule out alternatives to this interpretation. A possible procedure for “interworld” exchange of information and energy, using only state of the art quantum optical equipement, is described. A single ion is isolated from its environment in an ion trap. Then a quantum mechanical measurement with two discrete outcomes is performed on another system, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Quantum Mechanical Measurement Process.H. W. L. Naus - 2021 - Foundations of Physics 51 (1):1-13.
    The quantum mechanical measurement process is analyzed by means of an explicit generic model describing the interaction between object and measuring device. The solution of the Schrödinger equation for the whole system reflects the ‘collapse’ of the object wave function. A necessary condition is a sufficiently sharply peaked initial measurement device wave function, which is guaranteed in its classical limit. With this assumption, it is in particular proven that the off-diagonal elements of the object density matrix vanish. This study therefore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Decoherence in continuous measurements: From models to phenomenology. [REVIEW]Michael B. Mensky - 1997 - Foundations of Physics 27 (12):1637-1654.
    Decoherence is the name for the complex of phenomena leading to appearance of classical features of quantum systems. In the present paper decoherence in continuous measurements is analyzed with the help of restricted path integrals (RPI) and (equivalently in simple cases) complex Hamiltonians. A continuous measurement results in a readout giving information in the classical form on the evolution of the measured quantum system. The quantum features of the system reveal themselves in the variation of possible measurement readouts. For example, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • ‘Many Minds’ Interpretations of Quantum Mechanics.Michael Lockwood - 1996 - British Journal for the Philosophy of Science 47 (2):159-188.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • ‘Many Minds’ Interpretations of Quantum Mechanics.Michael Lockwood - 1996 - British Journal for the Philosophy of Science 47 (2):159-88.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Quantum/classical correspondence in the light of Bell's inequalities.Leonid A. Khalfin & Boris S. Tsirelson - 1992 - Foundations of Physics 22 (7):879-948.
    Instead of the usual asymptotic passage from quantum mechanics to classical mechanics when a parameter tended to infinity, a sharp boundary is obtained for the domain of existence of classical reality. The last is treated as separable empirical reality following d'Espagnat, described by a mathematical superstructure over quantum dynamics for the universal wave function. Being empirical, this reality is constructed in terms of both fundamental notions and characteristics of observers. It is presupposed that considered observers perceive the world as a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The quantum mechanics of minds and worlds.Meir Hemmo - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):541-553.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Quantum Mechanics of Minds and Worlds.Meir Hemmo - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):541-553.
    Download  
     
    Export citation  
     
    Bookmark  
  • The preferred basis problem in the many-worlds interpretation of quantum mechanics: why decoherence does not solve it.Meir Hemmo & Orly Shenker - 2022 - Synthese 200 (3):1-25.
    We start by very briefly describing the measurement problem in quantum mechanics and its solution by the Many Worlds Interpretation. We then describe the preferred basis problem, and the role of decoherence in the MWI. We discuss a number of approaches to the preferred basis problem and argue that contrary to the received wisdom, decoherence by itself does not solve the problem. We address Wallace’s emergentist approach based on what he calls Dennett’s criterion, and we compare the logical structure of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum probability and many worlds.Meir Hemmo & Itamar Pitowsky - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Quantum probability and many worlds.Meir Hemmo - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the nonprobabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Probability and nonlocality in many minds interpretations of quantum mechanics.Meir Hemmo & Itamar Pitowsky - 2003 - British Journal for the Philosophy of Science 54 (2):225-243.
    We argue that certain types of many minds (and many worlds) interpretations of quantum mechanics, e.g. Lockwood ([1996a]), Deutsch ([1985]) do not provide a coherent interpretation of the quantum mechanical probabilistic algorithm. By contrast, in Albert and Loewer's ([1988]) version of the many minds interpretation, there is a coherent interpretation of the quantum mechanical probabilities. We consider Albert and Loewer's probability interpretation in the context of Bell-type and GHZ-type states and argue that it implies a certain (weak) form of nonlocality. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Possible worlds in the modal interpretation.Meir Hemmo - 1996 - Philosophy of Science 63 (3):337.
    An outline for a modal interpretation in terms of possible worlds is presented. The so-called Schmidt histories are taken to correspond to the physically possible worlds. The decoherence function defined in the histories formulation of quantum theory is taken to prescribe a non-classical probability measure over the set of the possible worlds. This is shown to yield dynamics in the form of transition probabilities for occurrent events in each world. The role of the consistency condition is discussed.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Possible Worlds in the Modal Interpretation.Meir Hemmo - 1996 - Philosophy of Science 63 (5):S330-S337.
    An outline for a modal interpretation in terms of possible worlds is presented. The so-called Schmidt histories are taken to correspond to the physically possible worlds. The decoherence function defined in the histories formulation of quantum theory is taken to prescribe a non-classical probability measure over the set of the possible worlds. This is shown to yield dynamics in the form of transition probabilities for occurrent events in each world. The role of the consistency condition is discussed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Markovian and Non-Markovian Quantum Measurements.Jennifer R. Glick & Christoph Adami - 2020 - Foundations of Physics 50 (9):1008-1055.
    Consecutive measurements performed on the same quantum system can reveal fundamental insights into quantum theory’s causal structure, and probe different aspects of the quantum measurement problem. According to the Copenhagen interpretation, measurements affect the quantum system in such a way that the quantum superposition collapses after each measurement, erasing any memory of the prior state. We show here that counter to this view, un-amplified measurements have coherent ancilla density matrices that encode the memory of the entire set of quantum measurements (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Correspondence Principle and the Understanding of Decoherence.Sebastian Fortin & Olimpia Lombardi - 2019 - Foundations of Physics 49 (12):1372-1393.
    Although Bohr’s Correspondence Principle (CP) played a central role in the first days of quantum mechanics, its original version seems to have no present-day relevance. The purpose of this article is to show that the CP, with no need of being interpreted in terms of the quantum-to-classical limit, still plays a relevant role in the understanding of the relationships between the classical and the quantum domains. In particular, it will be argued that a generic version of the CP is very (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Partial Traces in Decoherence and in Interpretation: What Do Reduced States Refer to?Sebastian Fortin & Olimpia Lombardi - 2014 - Foundations of Physics 44 (4):426-446.
    The interpretation of the concept of reduced state is a subtle issue that has relevant consequences when the task is the interpretation of quantum mechanics itself. The aim of this paper is to argue that reduced states are not the quantum states of subsystems in the same sense as quantum states are states of the whole composite system. After clearly stating the problem, our argument is developed in three stages. First, we consider the phenomenon of environment-induced decoherence as an example (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the Ollivier–Poulin–Zurek Definition of Objectivity.Chris Fields - 2014 - Axiomathes 24 (1):137-156.
    The Ollivier–Poulin–Zurek definition of objectivity provides a philosophical basis for the environment as witness formulation of decoherence theory and hence for quantum Darwinism. It is shown that no account of the reference of the key terms in this definition can be given that does not render the definition inapplicable within quantum theory. It is argued that this is not the fault of the language used, but of the assumption that the laws of physics are independent of Hilbert-space decomposition. All evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A general conceptual framework for decoherence in closed and open systems.Mario Castagnino, Roberto Laura & Olimpia Lombardi - 2007 - Philosophy of Science 74 (5):968-980.
    In this paper we argue that the formalisms for decoherence originally devised to deal just with closed or open systems can be subsumed under a general conceptual framework, in such a way that they cooperate in the understanding of the same physical phenomenon. This new perspective dissolves certain conceptual difficulties of the einselection program but, at the same time, shows that the openness of the quantum system is not the essential ingredient for decoherence. †To contact the authors, please write to: (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A history of entanglement: Decoherence and the interpretation problem.Kristian Camilleri - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (4):290-302.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Everett's “Many-Worlds” proposal.Brett Maynard Bevers - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (1):3-12.
    Hugh Everett III proposed that a quantum measurement can be treated as an interaction that correlates microscopic and macroscopic systems—particularly when the experimenter herself is included among those macroscopic systems. It has been difficult, however, to determine precisely what this proposal amounts to. Almost without exception, commentators have held that there are ambiguities in Everett’s theory of measurement that result from significant—even embarrassing—omissions. In the present paper, we resist the conclusion that Everett’s proposal is incomplete, and we develop a close (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Everett's “Many-Worlds” proposal.Brett Maynard Bevers - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (1):3-12.
    Hugh Everett III proposed that a quantum measurement can be treated as an interaction that correlates microscopic and macroscopic systems—particularly when the experimenter herself is included among those macroscopic systems. It has been difficult, however, to determine precisely what this proposal amounts to. Almost without exception, commentators have held that there are ambiguities in Everett’s theory of measurement that result from significant—even embarrassing—omissions. In the present paper, we resist the conclusion that Everett’s proposal is incomplete, and we develop a close (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantum Arrangements.Gregg Jaeger & Anton Zeilinger - 2021 - Cham, Switzerland: Springer Nature.
    This book presents a collection of novel contributions and reviews by renowned researchers in the foundations of quantum physics, quantum optics, and neutron physics. It is published in honor of Michael Horne, whose exceptionally clear and groundbreaking work in the foundations of quantum mechanics and interferometry, both of photons and of neutrons, has provided penetrating insight into the implications of modern physics for our understanding of the physical world. He is perhaps best known for the Clauser-Horne-Shimony-Holt (CHSH) inequality. This collection (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The role of decoherence in quantum mechanics.Guido Bacciagaluppi - 2003 - Stanford Encyclopedia of Philosophy.
    Interference phenomena are a well-known and crucial feature of quantum mechanics, the two-slit experiment providing a standard example. There are situations, however, in which interference effects are (artificially or spontaneously) suppressed. We shall need to make precise what this means, but the theory of decoherence is the study of (spontaneous) interactions between a system and its environment that lead to such suppression of interference. This study includes detailed modelling of system-environment interactions, derivation of equations (‘master equations’) for the (reduced) state (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Spontaneous Symmetry Breaking in Finite Quantum Systems: a decoherent-histories approach.David Wallace - unknown
    Spontaneous symmetry breaking in quantum systems, such as ferromagnets, is normally described as degeneracy of the ground state; however, it is well established that this degeneracy only occurs in spatially infinite systems, and even better established that ferromagnets are not spatially infinite. I review this well-known paradox, and consider a popular solution where the symmetry is explicitly broken by some external field which goes to zero in the infinite-volume limit; although this is formally satisfactory, I argue that it must be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2007 - In Mauricio Suarez, Mauro Dorato & Miklos Redei (eds.), EPSA Philosophical Issues in the Sciences · Launch of the European Philosophy of Science Association. Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classical limit and quantum logic.Marcelo Losada, Sebastian Fortin & Federico Holik - 2018 - International Journal of Theoretical Physics 57:465–475.
    The more common scheme to explain the classical limit of quantum mechanics includes decoherence, which removes from the state the interference terms classically inadmissible since embodying non-Booleanity. In this work we consider the classical limit from a logical viewpoint, as a quantum-to-Boolean transition. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark