Abstract
We present an approach in which ancient Greek mathematical proofs by Hippocrates of Chios and Euclid are addressed as a form of (guided) intentional reasoning. Schematically, in a proof, we start with a sentence that works as a premise; this sentence is followed by another, the conclusion of what we might take to be an inferential step. That goes on until the last conclusion is reached. Guided by the text, we go through small inferential steps; in each one, we go through an autonomous reasoning process linking the premise to the conclusion. The reasoning process is accompanied by a metareasoning process. Metareasoning gives rise to a feeling-knowing of correctness. In each step/cycle of the proof, we have a feeling-knowing of correctness. Overall, we reach a feeling of correctness for the whole proof. We suggest that this approach allows us to address the issues of how a proof functions, for us, as an enabler to ascertain the correctness of its argument and how we ascertain this correctness.