# Abstract

John Venn has the “uneasy suspicion” that the stagnation in mathematical logic between J. H. Lambert and George Boole was due to Kant’s “disastrous effect on logical method,” namely the “strictest preservation [of logic] from mathematical encroachment.” Kant’s actual position is more nuanced, however. In this chapter, I tease out the nuances by examining his use of Leonhard Euler’s circles and comparing it with Euler’s own use. I do so in light of the developments in logical calculus from G. W. Leibniz to Lambert and Gottfried Ploucquet. While Kant is evidently open to using mathematical tools in logic, his main concern is to clarify what mathematical tools can be used to achieve. For without such clarification, all efforts at introducing mathematical tools into logic would be blind if not complete waste of time. In the end, Kant would stress, the means provided by formal logic at best help us to express and order what we already know in some sense. No matter how much mathematical notations may enhance the precision of this function of formal logic, it does not change the fact that no truths can, strictly speaking, be revealed or established by means of those notations.