# Programming Planck units from a virtual electron; a Simulation Hypothesis (summary)

Eur. Phys. J. Plus 133:278 (2018)
Abstract
The Simulation Hypothesis proposes that all of reality, including the earth and the universe, is in fact an artificial simulation, analogous to a computer simulation, and as such our reality is an illusion. In this essay I describe a method for programming mass, length, time and charge (MLTA) as geometrical objects derived from the formula for a virtual electron; $f_e = 4\pi^2r^3$ ($r = 2^6 3 \pi^2 \alpha \Omega^5$) where the fine structure constant $\alpha$ = 137.03599... and $\Omega$ = 2.00713494... are mathematical constants and the MLTA geometries are; M = (1), T = ($2\pi$), L = ($2\pi^2\Omega^2$), A = ($4\pi \Omega)^3/\alpha$. As objects they are independent of any set of units and also of any numbering system, terrestrial or alien. As the geometries are interrelated according to $f_e$, we can replace designations such as ($kg, m, s, A$) with a rule set; mass = $u^{15}$, length = $u^{-13}$, time = $u^{-30}$, ampere = $u^{3}$. The formula $f_e$ is unit-less ($u^0$) and combines these geometries in the following ratio M$^9$T$^{11}$/L$^{15}$ and (AL)$^3$/T, as such these ratio are unit-less. To translate MLTA to their respective SI Planck units requires an additional 2 unit-dependent scalars. We may thereby derive the CODATA 2014 physical constants via the 2 (fixed) mathematical constants ($\alpha, \Omega$), 2 dimensioned scalars and the rule set $u$. As all constants can be defined geometrically, the least precise constants ($G, h, e, m_e, k_B$...) can also be solved via the most precise ($c, \mu_0, R_\infty, \alpha$), numerical precision then limited by the precision of the fine structure constant $\alpha$.
Categories
(categorize this paper)
PhilPapers/Archive ID
MACAMU
Revision history
First archival date: 2016-06-11 References found in this work BETA Citations of this work BETA

No citations found. Analytics
Added to PP index
2016-06-11

Total views
897 ( #2,436 of 42,290 )