View topic on PhilPapers for more information
Related categories

68 found
Order:
More results on PhilPapers
1 — 50 / 68
  1. Frege's Basic Law V and Cantor's Theorem.Manuel Bremer - manuscript
    The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These ontological (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. What is mathematics for the youngest?Boris Culina - manuscript
    While there are satisfactory answers to the question "How to teach children mathematics?", there are no satisfactory answers to the question "Which mathematics to teach children?". This paper provides an answer to the last question for preschool children, although the answer is also applicable to older children. This answer, together with an appropriate methodology on how to teach mathematics, gives a clear conception of the place of mathematics in the children’s world and our role in helping children develop their mathematical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. A Structuralist Proposal for the Foundations of the Natural Numbers.Desmond Alan Ford - manuscript
    This paper introduces a novel object that has less structure than, and is ontologically prior to the natural numbers. As such it is a candidate model of the foundation that lies beneath the natural numbers. The implications for the construction of mathematical objects built upon that foundation are discussed.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Picturing the Infinite.Jeremy Gwiazda - manuscript
    The purpose of this note is to contrast a Cantorian outlook with a non-Cantorian one and to present a picture that provides support for the latter. In particular, I suggest that: i) infinite hyperreal numbers are the (actual, determined) infinite numbers, ii) ω is merely potentially infinite, and iii) infinitesimals should not be used in the di Finetti lottery. Though most Cantorians will likely maintain a Cantorian outlook, the picture is meant to motivate the obvious nature of the non-Cantorian outlook.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. 2. Programming relativity as the mathematics of perspective in a Planck unit Simulation Hypothesis.Malcolm Macleod - manuscript
    The Simulation Hypothesis proposes that all of reality is in fact an artificial simulation, analogous to a computer simulation. Outlined here is a method for programming relativistic mass, space and time at the Planck level as applicable for use in Planck Universe-as-a-Simulation Hypothesis. For the virtual universe the model uses a 4-axis hyper-sphere that expands in incremental steps (the simulation clock-rate). Virtual particles that oscillate between an electric wave-state and a mass point-state are mapped within this hyper-sphere, the oscillation driven (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. 3. Planck unit quantum gravity (gravitons) for Simulation Hypothesis modeling.Malcolm J. Macleod - manuscript
    Defined are gravitational formulas in terms of Planck units and units of $\hbar c$. Mass is not assigned as a constant property but is instead treated as a discrete event defined by units of Planck mass with gravity as an interaction between these units, the gravitational orbit as the sum of these mass-mass interactions and the gravitational coupling constant as a measure of the frequency of these interactions and not the magnitude of the gravitational force itself. Each particle that is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Is Euclid's proof of the infinitude of prime numbers tautological?Zeeshan Mahmud - manuscript
    Euclid's classic proof about the infinitude of prime numbers has been a standard model of reasoning in student textbooks and books of elementary number theory. It has withstood scrutiny for over 2000 years but we shall prove that despite the deceptive appearance of its analytical reasoning it is tautological in nature. We shall argue that the proof is more of an observation about the general property of a prime numbers than an expository style of natural deduction of the proof of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Integral Biomathics Reloaded: 2015.Plamen L. Simeonov & Ron Cottam - forthcoming - Journal Progress in Biophysics and Molecular Biology 119 (2).
    An updated survey of the research scope in Integral Biomathics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Conversation with John P. Burgess.Silvia De Toffoli - 2022 - Aphex 25.
    John P. Burgess is the John N. Woodhull Professor of Philosophy at Princeton University. He obtained his Ph.D. from the Logic and Methodology program at the University of California at Berkeley under the supervision of Jack H. Silver with a thesis on descriptive set theory. He is a very distinguished and influential philosopher of mathematics. He has written several books: A Subject with No Object (with G. Rosen, Oxford University Press, 1997), Computability and Logic (with G. Boolos and R. Jeffrey, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Virtue theory of mathematical practices: an introduction.Andrew Aberdein, Colin Jakob Rittberg & Fenner Stanley Tanswell - 2021 - Synthese 199 (3-4):10167-10180.
    Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, ready to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Mathematics, isomorphism, and the identity of objects.Graham White - 2021 - Journal of Knowledge Structures and Systems 2 (2):56-58.
    We compare the medieval projects of commentaries and disputations with the modern projects of formal ontology and of mathematics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. What Types Should Not Be.Bruno Bentzen - 2020 - Philosophia Mathematica 28 (1):60-76.
    In a series of papers Ladyman and Presnell raise an interesting challenge of providing a pre-mathematical justification for homotopy type theory. In response, they propose what they claim to be an informal semantics for homotopy type theory where types and terms are regarded as mathematical concepts. The aim of this paper is to raise some issues which need to be resolved for the successful development of their types-as-concepts interpretation.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13. A System of Axioms for Minkowski Spacetime.Lorenzo Cocco & Joshua Babic - 2020 - Journal of Philosophical Logic:1-37.
    We present an elementary system of axioms for the geometry of Minkowski spacetime. It strikes a balance between a simple and streamlined set of axioms and the attempt to give a direct formalization in first-order logic of the standard account of Minkowski spacetime in [Maudlin 2012] and [Malament, unpublished]. It is intended for future use in the formalization of physical theories in Minkowski spacetime. The choice of primitives is in the spirit of [Tarski 1959]: a predicate of betwenness and a (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. The Metametaphysics of Neo-Fregeanism.Matti Eklund - 2020 - In Ricki Bliss & James Miller (eds.), The Routledge Handbook of Metametaphysics. Routledge.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (4):551-568.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. The results of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Anti-Realism and Anti-Revisionism in Wittgenstein’s Philosophy of Mathematics.Anderson Nakano - 2020 - Grazer Philosophische Studien 97 (3):451-474.
    Since the publication of the Remarks on the Foundations of Mathematics, Wittgenstein’s interpreters have endeavored to reconcile his general constructivist/anti-realist attitude towards mathematics with his confessed anti-revisionary philosophy. In this article, the author revisits the issue and presents a solution. The basic idea consists in exploring the fact that the so-called “non-constructive results” could be interpreted so that they do not appear non-constructive at all. The author substantiates this solution by showing how the translation of mathematical results, given by the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. क्या Paraconsistent, अनिर्णयीय, रैंडम, Computable और अधूरा मतलब है? है Godel रास्ता की समीक्षा: ग्रेगरी Chaitin, फ्रांसिस्को एक डोरिया, न्यूटन सी.ए. दा कोस्टा 160p (2012 की समीक्षा संशोधित 2019) द्वारा एक undecidable दुनिया में शोषण What Do Paraconsistent, Undecidable, Random, Computable and Incomplete mean? A Review of Godel's Way: Exploits into an undecidable world by Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa.Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Las Vegas, NV, USA: Reality Press. pp. 198-214.
    'गोडेल के रास्ते' में तीन प्रख्यात वैज्ञानिकों ने अनिर्णय, अपूर्णता, यादृच्छिकता, गणनाऔरता और परासंगति जैसे मुद्दों पर चर्चा की। मैं Wittgensteinian दृष्टिकोण से इन मुद्दों दृष्टिकोण है कि वहाँ दो बुनियादी मुद्दों जो पूरी तरह से अलग समाधान है. वहाँ वैज्ञानिक या अनुभवजन्य मुद्दों, जो दुनिया के बारे में तथ्य है कि अवलोकन और दार्शनिक मुद्दों की जांच की जरूरत है के रूप में कैसे भाषा intelligibly इस्तेमाल किया जा सकता है (जो गणित और तर्क में कुछ सवाल शामिल हैं), (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. Revisão de ‘Eu sou um Loop Estranho’ (I am a Strange Loop) por Douglas Hofstadter (2007) (revisão revisada 2019).Michael Richard Starks - 2020 - In Entendendo as Conexões entre Ciência, Filosofia, Psicologia, Religião, Política, Economia, História e Literatura - Artigos e Avaliações 2006-2019. Las Vegas, NV USA: Reality Press. pp. 251-268.
    Último sermão da Igreja do naturalismo fundamentalista pelo pastor Hofstadter. Como o seu muito mais famoso (ou infame por seus erros filosóficos implacáveis) Godel, Escher, Bach, ele tem uma plausibilidade superficial, mas se se compreende que este é um cientificismo desenfreado que mistura questões científicas reais com os filosóficos (ou seja, o somente as edições reais são que jogos da língua nós devemos jogar) então quase todo seu interesse desaparece. Eu forneci um quadro para análise baseada na psicologia evolutiva e (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. Sofia A. Yanovskaya: The Marxist Pioneer of Mathematical Logic in the Soviet Union.Dimitris Kilakos - 2019 - Transversal: International Journal for the Historiography of Science 6:49-64.
    K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics and their interpretation. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. What Isn’t Obvious about ‘obvious’: A Data-driven Approach to Philosophy of Logic.Moti Mizrahi - 2019 - In Andrew Aberdein & Matthew Inglis (eds.), Advances in Experimental Philosophy of Logic and Mathematics. London: Bloomsbury Press. pp. 201-224.
    It is often said that ‘every logical truth is obvious’ (Quine 1970: 82), that the ‘axioms and rules of logic are true in an obvious way’ (Murawski 2014: 87), or that ‘logic is a theory of the obvious’ (Sher 1999: 207). In this chapter, I set out to test empirically how the idea that logic is obvious is reflected in the scholarly work of logicians and philosophers of logic. My approach is data-driven. That is to say, I propose that systematically (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. O que significa paraconsistente, indecível, aleatório, computável e incompleto?- Uma revisão da ‘Godel’s Way: exploits into an undecidable world’ (Maneira de Godel: façanhas em um mundo indecidível) por Gregory Chaitin, Francisco A Doria, Newton C.A. da costa 160P (2012) (revisão revisada 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI Filosofia, Natureza Humana e o Colapso da Civilization- Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 168-182.
    Em "Godel's Way", três cientistas eminentes discutem questões como a undecidability, incompletude, aleatoriedade, computabilidade e paraconsistência. Eu abordar estas questões do ponto de vista Wittgensteinian que existem duas questões básicas que têm soluções completamente diferentes. Há as questões científicas ou empíricas, que são fatos sobre o mundo que precisam ser investigados observacionalmente e questões filosóficas sobre como a linguagem pode ser usada inteligìvelmente (que incluem certas questões em matemática e lógica), que precisam ser decidido por olhar uma como nós realmente (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. Wolpert, Chaitin y Wittgenstein sobre la imposibilidad, la incompletitud, la paradoja mentirosa, el teísmo, los límites de la computación, un principio de incertidumbre mecánica no cuántica y el universo como computadora, el teorema definitivo en la teoría de la máquina de Turing (revisado en 2019).Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 64-70.
    It is commonly thought that Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were mostly resolved by Wittgenstein over 80years ago. -/- “What we are ‘tempted to say’ in such a case is, of course, not philosophy, but it is its raw material. Thus, for example, what a mathematician is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. ¿Qué significa paraconsistente, indescifrable, aleatorio, computable e incompleto? Una revisión de la Manera de Godel: explota en un mundo indecible (Godel’s Way: exploits into an undecidable world) por Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160P (2012) (revisión revisada 2019).Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 44-63.
    En ' Godel’s Way ', tres eminentes científicos discuten temas como la indecisión, la incompleta, la aleatoriedad, la computabilidad y la paraconsistencia. Me acerco a estas cuestiones desde el punto de vista de Wittgensteinian de que hay dos cuestiones básicas que tienen soluciones completamente diferentes. Existen las cuestiones científicas o empíricas, que son hechos sobre el mundo que necesitan ser investigados observacionalmente y cuestiones filosóficas en cuanto a cómo el lenguaje se puede utilizar inteligiblemente (que incluyen ciertas preguntas en matemáticas (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. Revisão de ' Os Limites Exteriores da Razão ' (The Outer Limits of Reason)por Noson Yanofsky 403p (2013) (revisão revisada 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI Filosofia, Natureza Humana e o Colapso da Civilization- Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 188-202.
    Eu dou uma revisão detalhada de "os limites exteriores da razão" por Noson Yanofsky de uma perspectiva unificada de Wittgenstein e psicologia evolutiva. Eu indico que a dificuldade com tais questões como paradoxo na linguagem e matemática, incompletude, undecidabilidade, computabilidade, o cérebro eo universo como computadores, etc., todos surgem a partir da falta de olhar atentamente para o nosso uso da linguagem no apropriado contexto e, consequentemente, a falta de separar questões de fato científico a partir de questões de como (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Reseña de ‘Soy un Bucle Extraño’ ( I am a Strange Loop) de Douglas Hofstadter.Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 21-43.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  26. Reseña de 'The Outer Limits of Reason' por Noson Yanofsky 403p (2013).Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 71-90.
    Doy una revisión detallada de ' los límites externos de la razón ' por Noson Yanofsky desde una perspectiva unificada de Wittgenstein y la psicología evolutiva. Yo indiqué que la dificultad con cuestiones como la paradoja en el lenguaje y las matemáticas, la incompletitud, la indeterminación, la computabilidad, el cerebro y el universo como ordenadores, etc., surgen de la falta de mirada cuidadosa a nuestro uso del lenguaje en el adecuado contexto y, por tanto, el Error al separar los problemas (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. Programming Planck units from a virtual electron; a Simulation Hypothesis (summary).Malcolm Macleod - 2018 - Eur. Phys. J. Plus 133:278.
    The Simulation Hypothesis proposes that all of reality, including the earth and the universe, is in fact an artificial simulation, analogous to a computer simulation, and as such our reality is an illusion. In this essay I describe a method for programming mass, length, time and charge (MLTA) as geometrical objects derived from the formula for a virtual electron; $f_e = 4\pi^2r^3$ ($r = 2^6 3 \pi^2 \alpha \Omega^5$) where the fine structure constant $\alpha$ = 137.03599... and $\Omega$ = 2.00713494... (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. Mohan Ganesalingam. The Language of Mathematics: A Linguistic and Philosophical Investigation. FoLLI Publications on Logic, Language and Information. [REVIEW]Andrew Aberdein - 2017 - Philosophia Mathematica 25 (1):143–147.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   17 citations  
  30. 'What the Tortoise said to Achilles': Lewis Carroll's Paradox of Inference.Amirouche Moktefi & Francine F. Abeles (eds.) - 2016 - London: The Lewis Carroll Society.
    Lewis Carroll’s 1895 paper, 'What the Tortoise Said to Achilles' is widely regarded as a classic text in the philosophy of logic. This special issue of 'The Carrollian' publishes five newly commissioned articles by experts in the field. The original paper is reproduced, together with contemporary correspondence relating to the paper and an extensive bibliography.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Proof phenomenon as a function of the phenomenology of proving.Inês Hipólito - 2015 - Progress in Biophysics and Molecular Biology 119:360-367.
    Kurt Gödel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question: “the question of the objective existence of the objects of mathematical intuition (which, incidentally, is an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical objects in perception. What is it like to experience a mathematical proving (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. Tales of wonder: Ian Hacking: Why is there philosophy of mathematics at all? Cambridge University Press, 2014, 304pp, $80 HB.Brendan Larvor - 2015 - Metascience 24 (3):471-478.
    Why is there Philosophy of Mathematics at all? Ian Hacking. in Metascience (2015).
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  33. Categoricity, Open-Ended Schemas and Peano Arithmetic.Adrian Ludușan - 2015 - Logos and Episteme 6 (3):313-332.
    One of the philosophical uses of Dedekind’s categoricity theorem for Peano Arithmetic is to provide support for semantic realism. To this end, the logical framework in which the proof of the theorem is conducted becomes highly significant. I examine different proposals regarding these logical frameworks and focus on the philosophical benefits of adopting open-ended schemas in contrast to second order logic as the logical medium of the proof. I investigate Pederson and Rossberg’s critique of the ontological advantages of open-ended arithmetic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  34. Kurt Gödels mathematische Anschauung und John P. Burgess’ mathematische Intuition.Eva-Maria Engelen - 2014 - XXIII Deutscher Kongress Für Philosophie Münster 2014, Konferenzveröffentlichung.
    John P. Burgess kritisiert Kurt Gödels Begriff der mathematischen oder rationalen Anschauung und erläutert, warum heuristische Intuition dasselbe leistet wie rationale Anschauung, aber ganz ohne ontologisch überflüssige Vorannahmen auskommt. Laut Burgess müsste Gödel einen Unterschied zwischen rationaler Anschauung und so etwas wie mathematischer Ahnung, aufzeigen können, die auf unbewusster Induktion oder Analogie beruht und eine heuristische Funktion bei der Rechtfertigung mathematischer Aussagen einnimmt. Nur, wozu benötigen wir eine solche Annahme? Reicht es nicht, wenn die mathematische Intuition als Heuristik funktioniert? Für (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  35. Plato’s Philosophy of Cognition by Mathematical Modelling.Roman S. Kljujkov & Sergey F. Kljujkov - 2014 - Dialogue and Universalism 24 (3):110-115.
    By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a long time, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  36. Presences of the Infinite: J.M. Coetzee and Mathematics.Peter Johnston - 2013 - Dissertation, Royal Holloway, University of London
    This thesis articulates the resonances between J. M. Coetzee's lifelong engagement with mathematics and his practice as a novelist, critic, and poet. Though the critical discourse surrounding Coetzee's literary work continues to flourish, and though the basic details of his background in mathematics are now widely acknowledged, his inheritance from that background has not yet been the subject of a comprehensive and mathematically- literate account. In providing such an account, I propose that these two strands of his intellectual trajectory not (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  37. Education Enhances the Acuity of the Nonverbal Approximate Number System.Manuela Piazza, Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2013 - Psychological Science 24 (4):p.
    All humans share a universal, evolutionarily ancient approximate number system (ANS) that estimates and combines the numbers of objects in sets with ratio-limited precision. Interindividual variability in the acuity of the ANS correlates with mathematical achievement, but the causes of this correlation have never been established. We acquired psychophysical measures of ANS acuity in child and adult members of an indigene group in the Amazon, the Mundurucú, who have a very restricted numerical lexicon and highly variable access to mathematics education. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   27 citations  
  38. Defending the axioms-On the philosophical foundations of set theory, Penelope Maddy. [REVIEW]Eduardo Castro - 2012 - Teorema: International Journal of Philosophy 31 (1):147-150.
    Review of Maddy, Penelope "Defending the Axioms".
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  39. Mathematical realism and conceptual semantics.Luke Jerzykiewicz - 2012 - In Oleg Prosorov & Vladimir Orevkov (eds.), Philosophy, Mathematics, Linguistics: Aspects of Interaction. Euler International Mathematical Institute.
    The dominant approach to analyzing the meaning of natural language sentences that express mathematical knowl- edge relies on a referential, formal semantics. Below, I discuss an argument against this approach and in favour of an internalist, conceptual, intensional alternative. The proposed shift in analytic method offers several benefits, including a novel perspective on what is required to track mathematical content, and hence on the Benacerraf dilemma. The new perspective also promises to facilitate discussion between philosophers of mathematics and cognitive scientists (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  40. La dinamica delle teorie scientifiche. Strutturalismo ed interpretazione logico-formale dell’epistemologia di Kuhn, with a preface of C. Ulises Moulines.Tommaso Perrone - 2012 - Franco Angeli.
    Philosophy of science in the 20th century is to be considered as mostly characterized by a fundamentally systematic heuristic attitude, which looks to mathematics, and more generally to the philosophy of mathematics, for a genuinely and epistemologically legitimate form of knowledge. Rooted in this assumption, the book provides a formal reconsidering of the dynamics of scientific theories, especially in the field of the physical sciences, and offers a significant contribution to current epistemological investigations regarding the validity of using formal (especially: (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  41. Papineau's Philosophical Devices [Review]. [REVIEW]Matheus Silva - 2012 - Fundamento 5:147-150.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  42. Agent-based modeling: the right mathematics for the social sciences?Paul L. Borrill & Leigh Tesfatsion - 2011 - In J. B. Davis & D. W. Hands (eds.), Elgar Companion to Recent Economic Methodology. Edward Elgar Publishers. pp. 228.
    This study provides a basic introduction to agent-based modeling (ABM) as a powerful blend of classical and constructive mathematics, with a primary focus on its applicability for social science research. The typical goals of ABM social science researchers are discussed along with the culture-dish nature of their computer experiments. The applicability of ABM for science more generally is also considered, with special attention to physics. Finally, two distinct types of ABM applications are summarized in order to illustrate concretely the duality (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. Bolzano versus Kant: mathematics as a scientia universalis.Paola Cantù - 2011 - Philosophical Papers Dedicated to Kevin Mulligan.
    The paper discusses some changes in Bolzano's definition of mathematics attested in several quotations from the Beyträge, Wissenschaftslehre and Grössenlehre: is mathematics a theory of forms or a theory of quantities? Several issues that are maintained throughout Bolzano's works are distinguished from others that were accepted in the Beyträge and abandoned in the Grössenlehre. Changes are interpreted as a consequence of the new logical theory of truth introduced in the Wissenschaftslehre, but also as a consequence of the overcome of Kant's (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Unlimited Possibilities.Gonçalo Santos - 2011 - In Michal Peliš & Vít Punčochář (eds.), The Logica Yearbook. College Publications.
    I distinguish between a metaphysical and a logical reading of Generality Relativism. While the former denies the existence of an absolutely general domain, the latter denies the availability of such a domain. In this paper I argue for the logical thesis but remain neutral in what concerns metaphysics. To motivate Generality Relativism I defend a principle according to which a collection can always be understood as a set-like collection. I then consider a modal version of Generality Relativism and sketch how (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  45. Wisdom Mathematics.Nicholas Maxwell - 2010 - Friends of Wisdom Newsletter (6):1-6.
    For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could mathematics be knowledge (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. The gödel paradox and Wittgenstein's reasons.Francesco Berto - 2009 - Philosophia Mathematica 17 (2):208-219.
    An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics match (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  47. Deleuze and the Mathematical Philosophy of Albert Lautman.Simon B. Duffy - 2009 - In Jon Roffe & Graham Jones (eds.), Deleuze’s Philosophical Lineage. Edinburgh University Press.
    In the chapter of Difference and Repetition entitled ‘Ideas and the synthesis of difference,’ Deleuze mobilizes mathematics to develop a ‘calculus of problems’ that is based on the mathematical philosophy of Albert Lautman. Deleuze explicates this process by referring to the operation of certain conceptual couples in the field of contemporary mathematics: most notably the continuous and the discontinuous, the infinite and the finite, and the global and the local. The two mathematical theories that Deleuze draws upon for this purpose (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Wittgenstein Sobre as Provas Indutivas.André Porto - 2009 - Dois Pontos 6 (2).
    This paper offers a reconstruction of Wittgenstein's discussion on inductive proofs. A "algebraic version" of these indirect proofs is offered and contrasted with the usual ones in which an infinite sequence of modus pones is projected.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  49. Review of S. Duffy, Virtual Mathematics: the Logic of Difference (Clinamen, 2006). [REVIEW]Colin McLarty - 2008 - Australasian Journal of Philosophy 86 (2):332-336.
    This book is important for philosophy of mathematics and for the study of French philosophy. French philosophers are more concerned than most Anglo-American with mathematical practice outside of foundations. This contradicts the fashionable claim that French intellectuals get science all wrong and we return below to a germane example from Sokal and Bricmont [1999]. The emphasis on practice goes back to mid-20th century French historians of science including those Kuhn cites as sources for his orientation in philosophy of science [Kuhn (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  50. Introduction: The Empirical and the Formal - Tensions in Scientific Knowledge.Gregor Schiemann & Friedrich Steinle - 2008 - Centaurus 50 (3):211-213.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 68