Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy.John Stewart Bell - 2004 - New York: Cambridge University Press.
    This book comprises all of John Bell's published and unpublished papers in the field of quantum mechanics, including two papers that appeared after the first edition was published. It also contains a preface written for the first edition, and an introduction by Alain Aspect that puts into context Bell's great contribution to the quantum philosophy debate. One of the leading expositors and interpreters of modern quantum theory, John Bell played a major role in the development of our current understanding of (...)
    Download  
     
    Export citation  
     
    Bookmark   390 citations  
  • Bell-type quantum field theories.Sheldon Goldstein - manuscript
    In [3] John S. Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a |Ψ|2-distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; such processes we call Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantum equilibrium and the role of operators as observables in quantum theory.Sheldon Goldstein - manuscript
    Bohmian mechanics is arguably the most naively obvious embedding imaginable of Schr¨ odinger’s equation into a completely coherent physical theory. It describes a world in which particles move in a highly non-Newtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψ its configuration is typically (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • A philosopher looks at quantum mechanics (again).Hilary Putnam - 2005 - British Journal for the Philosophy of Science 56 (4):615-634.
    A Philosopher Looks at Quantum Mechanics’ (Putnam [1965]) explained why the interpretation of quantum mechanics is a philosophical problem in detail, but with only the necessary minimum of technicalities, in the hope of making the difficulties intelligible to as wide an audience as possible. When I wrote it, I had not seen Bell ([1964]), nor (of course) had I seen Ghirardi et al. ([1986]). And I did not discuss the ‘Many Worlds’ interpretation. For all these reasons, I have decided to (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Wave Function Ontology.Bradley Monton - 2002 - Synthese 130 (2):265-277.
    I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of the appropriate mental states in (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Are all particles real?Sheldon Goldstein, James Taylor, Roderich Tumulka & Nino Zanghi - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):103-112.
    In Bohmian mechanics elementary particles exist objectively, as point particles moving according to a law determined by a wavefunction. In this context, questions as to whether the particles of a certain species are real---questions such as, Do photons exist? Electrons? Or just the quarks?---have a clear meaning. We explain that, whatever the answer, there is a corresponding Bohm-type theory, and no experiment can ever decide between these theories. Another question that has a clear meaning is whether particles are intrinsically distinguishable, (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Interpreting spontaneous collapse theories.Peter J. Lewis - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):165-180.
    Spontaneous collapse theories of quantum mechanics require an interpretation if their claim to solve the measurement problem is to be vindicated. The most straightforward interpretation rule, the fuzzy link, generates a violation of common sense known as the counting anomaly. Recently, a consensus has developed that the mass density link provides an appropriate interpretation of spontaneous collapse theories that avoids the counting anomaly. In this paper, I argue that the mass density link violates common sense in just as striking a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Elementary Quantum Metaphysics.David Albert - 1996 - In James T. Cushing, Arthur Fine & Sheldon Goldstein (eds.), Bohmian mechanics and quantum theory: an appraisal. Springer. pp. 277-284.
    Once upon a time, the twentieth-century investigations of the behaviors of sub-atomic particles were thought to have established that there can be no such thing as an objective, observer-independent, scientifically realist, empirically adequate picture of the physical world.
    Download  
     
    Export citation  
     
    Bookmark   203 citations  
  • Quantum Equilibrium and the Origin of Absolute Uncertainty.Detlef Durr, Sheldon Goldstein & Nino Zanghi - 1992 - Journal of Statistical Physics 67:843-907.
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Quantum Theory Without Observers.Sheldon Goldstein - unknown
    Despite its extraordinary predictive successes, quantum mechanics has, since its inception some seventy years ago, been plagued by conceptual di culties. The basic problem, plainly put, is this: It is not at all clear what quantum mechanics is about. What, in fact, does quantum mechanics describe?
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Bohmian mechanics and quantum theory: an appraisal.James T. Cushing, Arthur Fine & Sheldon Goldstein - 1996 - Springer.
    We are often told that quantum phenomena demand radical revisions of our scientific world view and that no physical theory describing well defined objects, such as particles described by their positions, evolving in a well defined way, let alone deterministically, can account for such phenomena. The great majority of physicists continue to subscribe to this view, despite the fact that just such a deterministic theory, accounting for all of the phe nomena of nonrelativistic quantum mechanics, was proposed by David Bohm (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)”Relative state’ formulation of quantum mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454--462.
    Download  
     
    Export citation  
     
    Bookmark   295 citations  
  • On the Problem of Hidden Variables in Quantum Mechanics.J. S. Bell - 2004 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 1--13.
    Download  
     
    Export citation  
     
    Bookmark   265 citations  
  • Describing the macroscopic world: Closing the circle within the dynamical reduction program. [REVIEW]G. C. Ghirardi, R. Grassi & F. Benatti - 1995 - Foundations of Physics 25 (1):5-38.
    With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe systems within a genuine Hilbert space framework, the peculiar features of the spontaneous reduction models limit drastically the states which are dynamically stable. (...)
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • Relativistic Spontaneous Localization: A Proposal. [REVIEW]Oreste Nicrosini & Alberto Rimini - 2003 - Foundations of Physics 33 (7):1061-1084.
    A new proposal for a Lorentz-invariant spontaneous localization process in the framework of relativistic quantum field theory is presented. As in all dynamical reduction models, a stochastic process is introduced, which drives the state vector towards the eigenspaces of a set of operators representing suitably chosen physical quantities. Such operators constitute a Lorentz scalar field and are built as time averages and space integrals of a local field-theoretic operator in such a way that the quantities they represent acquire a macroscopic (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the Role of Density Matrices in Bohmian Mechanics.Detlef Dürr, Sheldon Goldstein, Roderich Tumulka & Nino Zanghí - 2005 - Foundations of Physics 35 (3):449-467.
    It is well known that density matrices can be used in quantum mechanics to represent the information available to an observer about either a system with a random wave function (“statistical mixture”) or a system that is entangled with another system (“reduced density matrix”). We point out another role, previously unnoticed in the literature, that a density matrix can play: it can be the “conditional density matrix,” conditional on the configuration of the environment. A precise definition can be given in (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II.David Bohm - 1952 - Physical Review (85):166-193.
    Download  
     
    Export citation  
     
    Bookmark   315 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   399 citations  
  • A Relativistic Version of the Ghirardi–Rimini–Weber Model.Roderich Tumulka - 2006 - Journal of Statistical Physics 125:821-840.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • La natura delle cose: introduzione ai fondamenti e alla filosofia della fisica.Valia Allori, Mauro Dorato, Federico Laudisa & Nino Zanghi (eds.) - 2005 - Roma: Carocci.
    The year 2005 has been named the World Year of Physics in recognition of the 100th anniversary of Albert Einstein's "Miracle Year," in which he published four landmark papers which had deep and great influence on the last and the current century: quantum theory, general relativity, and statistical mechanics. Despite the enormous importance that Einstein’s discoveries played in these theories, most physicists adopt a version of quantum theory which is incompatible with the idea that motivated Einstein in the first place. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations