Switch to: Citations

Add references

You must login to add references.
  1. Quantum Equilibrium and the Origin of Absolute Uncertainty.Detlef Durr, Sheldon Goldstein & Nino Zanghi - 1992 - Journal of Statistical Physics 67:843-907.
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • Can the world be only wavefunction?Tim Maudlin - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Quantum Theory Without Observers.Sheldon Goldstein - unknown
    Despite its extraordinary predictive successes, quantum mechanics has, since its inception some seventy years ago, been plagued by conceptual di culties. The basic problem, plainly put, is this: It is not at all clear what quantum mechanics is about. What, in fact, does quantum mechanics describe?
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Consequence for Wavefunction Collapse Model of the Sudbury Neutrino Observatory Experiment.Gordon Jones, Philip Pearle & James Ring - 2004 - Foundations of Physics 34 (10):1467-1474.
    It is shown that data on the dissociation rate of deuterium obtained in an experiment at the Sudbury Neutrino Observatory provides evidence that the Continuous Spontaneous Localization wavefunction collapse model should have mass–proportional coupling to be viable.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Problem of Hidden Variables in Quantum Mechanics.J. S. Bell - 1987 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 1--13.
    Download  
     
    Export citation  
     
    Bookmark   257 citations  
  • Describing the macroscopic world: Closing the circle within the dynamical reduction program. [REVIEW]G. C. Ghirardi, R. Grassi & F. Benatti - 1995 - Foundations of Physics 25 (1):5-38.
    With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe systems within a genuine Hilbert space framework, the peculiar features of the spontaneous reduction models limit drastically the states which are dynamically stable. (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • On the Role of Density Matrices in Bohmian Mechanics.Detlef Dürr, Sheldon Goldstein, Roderich Tumulka & Nino Zanghí - 2005 - Foundations of Physics 35 (3):449-467.
    It is well known that density matrices can be used in quantum mechanics to represent the information available to an observer about either a system with a random wave function (“statistical mixture”) or a system that is entangled with another system (“reduced density matrix”). We point out another role, previously unnoticed in the literature, that a density matrix can play: it can be the “conditional density matrix,” conditional on the configuration of the environment. A precise definition can be given in (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II.David Bohm - 1952 - Physical Review (85):166-193.
    Download  
     
    Export citation  
     
    Bookmark   313 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   399 citations  
  • A Relativistic Version of the Ghirardi–Rimini–Weber Model.Roderich Tumulka - 2006 - Journal of Statistical Physics 125:821-840.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • La natura delle cose: introduzione ai fondamenti e alla filosofia della fisica.Valia Allori, Mauro Dorato, Federico Laudisa & Nino Zanghi (eds.) - 2005 - Roma: Carocci.
    The year 2005 has been named the World Year of Physics in recognition of the 100th anniversary of Albert Einstein's "Miracle Year," in which he published four landmark papers which had deep and great influence on the last and the current century: quantum theory, general relativity, and statistical mechanics. Despite the enormous importance that Einstein’s discoveries played in these theories, most physicists adopt a version of quantum theory which is incompatible with the idea that motivated Einstein in the first place. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Many Worlds and Schrodinger's First Quantum Theory.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The quantum formalism and the grw formalism.Sheldon Goldstein - unknown
    The Ghirardi–Rimini–Weber (GRW) theory of spontaneous wave function collapse is known to provide a quantum theory without observers, in fact two different ones by using either the matter density ontology (GRWm) or the flash ontology (GRWf). Both theories are known to make predictions different from those of quantum mechanics, but the difference is so small that no decisive experiment can as yet be performed. While some testable deviations from quantum mechanics have long been known, we provide here something that has (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Quantum equilibrium and the role of operators as observables in quantum theory.Sheldon Goldstein - manuscript
    Bohmian mechanics is arguably the most naively obvious embedding imaginable of Schr¨ odinger’s equation into a completely coherent physical theory. It describes a world in which particles move in a highly non-Newtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψ its configuration is typically (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • GRW theory.Roman Frigg - manuscript
    Ψ and out corresponding to the marble being inside or outside the box. These states are eigenvectors of the operator Bˆ , measuring whether the marble is inside or outside the box. The formalism of quantum mechanics..
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory Dedicated to GianCarlo Ghirardi on the occasion of his 70th birthday.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2008 - British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • A philosopher looks at quantum mechanics (again).Hilary Putnam - 2005 - British Journal for the Philosophy of Science 56 (4):615-634.
    A Philosopher Looks at Quantum Mechanics’ (Putnam [1965]) explained why the interpretation of quantum mechanics is a philosophical problem in detail, but with only the necessary minimum of technicalities, in the hope of making the difficulties intelligible to as wide an audience as possible. When I wrote it, I had not seen Bell ([1964]), nor (of course) had I seen Ghirardi et al. ([1986]). And I did not discuss the ‘Many Worlds’ interpretation. For all these reasons, I have decided to (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations