Switch to: Citations

Add references

You must login to add references.
  1. A minimal pair of recursively enumerable degrees.C. E. M. Yates - 1966 - Journal of Symbolic Logic 31 (2):159-168.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets.Robert I. Soare - 1990 - Journal of Symbolic Logic 55 (1):356-357.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Wtt-degrees and t-degrees of R.e. Sets.Michael Stob - 1983 - Journal of Symbolic Logic 48 (4):921-930.
    We use some simple facts about the wtt-degrees of r.e. sets together with a construction to answer some questions concerning the join and meet operators in the r.e. degrees. The construction is that of an r.e. Turing degree a with just one wtt-degree in a such that a is the join of a minimal pair of r.e. degrees. We hope to illustrate the usefulness of studying the stronger reducibility orderings of r.e. sets for providing information about Turing reducibility.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Review: A. H. Lachlan, Lower Bounds for Pairs of Recursively Enumerable Degrees. [REVIEW]Carl G. Jockusch - 1972 - Journal of Symbolic Logic 37 (3):611-611.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Bounding minimal pairs.A. H. Lachlan - 1979 - Journal of Symbolic Logic 44 (4):626-642.
    Download  
     
    Export citation  
     
    Bookmark   22 citations