Switch to: References

Add citations

You must login to add citations.
  1. Some minimal pairs of alpha-recursively enumerable degrees.Manuel Lerman - 1972 - Annals of Mathematical Logic 4 (4):415.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Admissible ordinals and lattices of alpha-r.e. sets.Michael Machtey - 1971 - Annals of Mathematical Logic 2 (4):379.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Splitting theorems in recursion theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.
    A splitting of an r.e. set A is a pair A1, A2 of disjoint r.e. sets such that A1 A2 = A. Theorems about splittings have played an important role in recursion theory. One of the main reasons for this is that a splitting of A is a decomposition of A in both the lattice, , of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable degrees . Thus splitting theor ems have been used to obtain results about (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Intervals containing exactly one c.e. degree.Guohua Wu - 2007 - Annals of Pure and Applied Logic 146 (1):91-102.
    Cooper proved in [S.B. Cooper, Strong minimal covers for recursively enumerable degrees, Math. Logic Quart. 42 191–196] the existence of a c.e. degree with a strong minimal cover . So is the greastest c.e. degree below . Cooper and Yi pointed out in [S.B. Cooper, X. Yi, Isolated d.r.e. degrees, University of Leeds, Dept. of Pure Math., 1995. Preprint] that this strongly minimal cover cannot be d.c.e., and meanwhile, they proposed the notion of isolated degrees: a d.c.e. degree is isolated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the enumeration degrees (D\sb e) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The recursively enumerable alpha-degrees are dense.Richard A. Shore - 1976 - Annals of Mathematical Logic 9 (1/2):123.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Incomparable prime ideals of recursively enumerable degrees.William C. Calhoun - 1993 - Annals of Pure and Applied Logic 63 (1):39-56.
    Calhoun, W.C., Incomparable prime ideals of recursively enumerable degrees, Annals of Pure and Applied Logic 63 39–56. We show that there is a countably infinite antichain of prime ideals of recursively enumerable degrees. This solves a generalized form of Post's problem.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intervals and sublattices of the R.E. weak truth table degrees, part I: Density.R. G. Downey - 1989 - Annals of Pure and Applied Logic 41 (1):1-26.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infima in the Recursively Enumerable Weak Truth Table Degrees.Rich Blaylock, Rod Downey & Steffen Lempp - 1997 - Notre Dame Journal of Formal Logic 38 (3):406-418.
    We show that for every nontrivial r.e. wtt-degree a, there are r.e. wtt-degrees b and c incomparable to a such that the infimum of a and b exists but the infimum of a and c fails to exist. This shows in particular that there are no strongly noncappable r.e. wtt-degrees, in contrast to the situation in the r.e. Turing degrees.
    Download  
     
    Export citation  
     
    Bookmark  
  • The d.r.e. degrees are not dense.S. Barry Cooper, Leo Harrington, Alistair H. Lachlan, Steffen Lempp & Robert I. Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The recursively enumerable degrees have infinitely many one-types.Klaus Ambos-Spies & Robert I. Soare - 1989 - Annals of Pure and Applied Logic 44 (1-2):1-23.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Structural interactions of the recursively enumerable T- and W-degrees.R. G. Downey & M. Stob - 1986 - Annals of Pure and Applied Logic 31:205-236.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Infima in the d.r.e. degrees.D. Kaddah - 1993 - Annals of Pure and Applied Logic 62 (3):207-263.
    This paper analyzes several properties of infima in Dn, the n-r.e. degrees. We first show that, for every n> 1, there are n-r.e. degrees a, b, and c, and an -r.e. degree x such that a < x < b, c and, in Dn, b c = a. We also prove a related result, namely that there are two d.r.e. degrees that form a minimal pair in Dn, for each n < ω, but that do not form a minimal pair (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A non-inversion theorem for the jump operator.Richard A. Shore - 1988 - Annals of Pure and Applied Logic 40 (3):277-303.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Degrees of functionals.Dag Normann - 1979 - Annals of Mathematical Logic 16 (3):269.
    Download  
     
    Export citation  
     
    Bookmark  
  • Elementary differences between the degrees of unsolvability and degrees of compressibility.George Barmpalias - 2010 - Annals of Pure and Applied Logic 161 (7):923-934.
    Given two infinite binary sequences A,B we say that B can compress at least as well as A if the prefix-free Kolmogorov complexity relative to B of any binary string is at most as much as the prefix-free Kolmogorov complexity relative to A, modulo a constant. This relation, introduced in Nies [14] and denoted by A≤LKB, is a measure of relative compressing power of oracles, in the same way that Turing reducibility is a measure of relative information. The equivalence classes (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A finite lattice without critical triple that cannot be embedded into the enumerable Turing degrees.Steffen Lempp & Manuel Lerman - 1997 - Annals of Pure and Applied Logic 87 (2):167-185.
    We exhibit a finite lattice without critical triple that cannot be embedded into the enumerable Turing degrees. Our method promises to lead to a full characterization of the finite lattices embeddable into the enumerable Turing degrees.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Degrees of unsolvability complementary between recursively enumerable degrees, Part I.S. B. Cooper - 1972 - Annals of Mathematical Logic 4 (1):31.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An extended Lachlan splitting theorem.Steffen Lempp & Sui Yuefei - 1996 - Annals of Pure and Applied Logic 79 (1):53-59.
    We show that the top of any diamond with bottom 0 in the r.e. degrees is also the top of a stack of n diamonds with bottom 0.
    Download  
     
    Export citation  
     
    Bookmark  
  • Tracing and domination in the Turing degrees.George Barmpalias - 2012 - Annals of Pure and Applied Logic 163 (5):500-505.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computably enumerable sets and quasi-reducibility.R. Downey, G. LaForte & A. Nies - 1998 - Annals of Pure and Applied Logic 95 (1-3):1-35.
    We consider the computably enumerable sets under the relation of Q-reducibility. We first give several results comparing the upper semilattice of c.e. Q-degrees, RQ, Q, under this reducibility with the more familiar structure of the c.e. Turing degrees. In our final section, we use coding methods to show that the elementary theory of RQ, Q is undecidable.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A necessary and sufficient condition for embedding principally decomposable finite lattices into the computably enumerable degrees preserving greatest element.Burkhard Englert - 2001 - Annals of Pure and Applied Logic 112 (1):1-26.
    We present a necessary and sufficient condition for the embeddability of a finite principally decomposable lattice into the computably enumerable degrees preserving greatest element.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complementing cappable degrees in the difference hierarchy.Rod Downey, Angsheng Li & Guohua Wu - 2004 - Annals of Pure and Applied Logic 125 (1-3):101-118.
    We prove that for any computably enumerable degree c, if it is cappable in the computably enumerable degrees, then there is a d.c.e. degree d such that c d = 0′ and c ∩ d = 0. Consequently, a computably enumerable degree is cappable if and only if it can be complemented by a nonzero d.c.e. degree. This gives a new characterization of the cappable degrees.
    Download  
     
    Export citation  
     
    Bookmark  
  • On co-simple isols and their intersection types.Rod Downey & Theodore A. Slaman - 1992 - Annals of Pure and Applied Logic 56 (1-3):221-237.
    We solve a question of McLaughlin by showing that if A is a regressive co-simple isol, there is a co-simple regressive isol B such that the intersection type of A and B is trivial. The proof is a nonuniform 0 priority argument that can be viewed as the execution of a single strategy from a 0-argument. We establish some limit on the properties of such pairs by showing that if AxB has low degree, then the intersection type of A and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lattice nonembeddings and intervals of the recursively enumerable degrees.Peter Cholak & Rod Downey - 1993 - Annals of Pure and Applied Logic 61 (3):195-221.
    Let b and c be r.e. Turing degrees such that b>c. We show that there is an r.e. degree a such that b>a>c and all lattices containing a critical triple, including the lattice M5, cannot be embedded into the interval [c, a].
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A necessary and sufficient condition for embedding ranked finite partial lattices into the computably enumerable degrees.M. Lerman - 1998 - Annals of Pure and Applied Logic 94 (1-3):143-180.
    We define a class of finite partial lattices which admit a notion of rank compatible with embedding constructions, and present a necessary and sufficient condition for the embeddability of a finite ranked partial lattice into the computably enumerable degrees.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The weak truth table degrees of recursively enumerable sets.Richard E. Ladner & Leonard P. Sasso - 1975 - Annals of Mathematical Logic 8 (4):429-448.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Almost universal cupping and diamond embeddings.Jiang Liu & Guohua Wu - 2012 - Annals of Pure and Applied Logic 163 (6):717-729.
    Download  
     
    Export citation  
     
    Bookmark  
  • Undecidability and 1-types in the recursively enumerable degrees.Klaus Ambos-Spies & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 63 (1):3-37.
    Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 3–37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to the original proof of the former which used a very complicated O''' argument our proof proceeds by a much simpler infinite injury argument. Moreover, it combines with the permitting technique to get similar results for any (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations