Switch to: Citations

Add references

You must login to add references.
  1. Computable structures and the hyperarithmetical hierarchy.C. J. Ash - 2000 - New York: Elsevier. Edited by J. Knight.
    This book describes a program of research in computable structure theory. The goal is to find definability conditions corresponding to bounds on complexity which persist under isomorphism. The results apply to familiar kinds of structures (groups, fields, vector spaces, linear orderings Boolean algebras, Abelian p-groups, models of arithmetic). There are many interesting results already, but there are also many natural questions still to be answered. The book is self-contained in that it includes necessary background material from recursion theory (ordinal notations, (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Theory of recursive functions and effective computability.Hartley Rogers - 1987 - Cambridge: MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   480 citations  
  • Pseudo-Jump Operators. II: Transfinite Iterations, Hierarchies and Minimal Covers.Carl G. Jockusch & Richard A. Shore - 1984 - Journal of Symbolic Logic 49 (4):1205 - 1236.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (2 other versions)Computable Structures and the Hyperarithmetical Hierarchy.Valentina Harizanov - 2001 - Bulletin of Symbolic Logic 7 (3):383-385.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Limits on jump inversion for strong reducibilities.Barbara F. Csima, Rod Downey & Keng Meng Ng - 2011 - Journal of Symbolic Logic 76 (4):1287-1296.
    We show that Sacks' and Shoenfield's analogs of jump inversion fail for both tt- and wtt-reducibilities in a strong way. In particular we show that there is a ${\mathrm{\Delta }}_{2}^{0}$ set B > tt ∅′ such that there is no c.e. set A with A′ ≡ wtt B. We also show that there is a ${\mathrm{\Sigma }}_{2}^{0}$ set C > tt ∅′ such that there is no ${\mathrm{\Delta }}_{2}^{0}$ set D with D′ ≡ wtt C.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)On Degrees of Unsolvability.J. R. Shoenfield - 1964 - Journal of Symbolic Logic 29 (4):203-204.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Automorphisms of the truth-table degrees are fixed on a cone.Bernard A. Anderson - 2009 - Journal of Symbolic Logic 74 (2):679-688.
    Let $D_{tt} $ denote the set of truth-table degrees. A bijection π: $D_{tt} \to \,D_{tt} $ is an automorphism if for all truth-table degrees x and y we have $ \leqslant _{tt} \,y\, \Leftrightarrow \,\pi (x)\, \leqslant _{tt} \,\pi (y)$ . We say an automorphism π is fixed on a cone if there is a degree b such that for all $x \geqslant _{tt} b$ we have π(x) = x. We first prove that for every 2-generic real X we have (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Recursive Enumerability and the Jump Operator.Gerald E. Sacks - 1964 - Journal of Symbolic Logic 29 (4):204-204.
    Download  
     
    Export citation  
     
    Bookmark   15 citations