Switch to: References

Add citations

You must login to add citations.
  1. Htp-complete rings of rational numbers.Russell Miller - 2022 - Journal of Symbolic Logic 87 (1):252-272.
    For a ring R, Hilbert’s Tenth Problem $HTP$ is the set of polynomial equations over R, in several variables, with solutions in R. We view $HTP$ as an enumeration operator, mapping each set W of prime numbers to $HTP$, which is naturally viewed as a set of polynomials in $\mathbb {Z}[X_1,X_2,\ldots ]$. It is known that for almost all W, the jump $W'$ does not $1$ -reduce to $HTP$. In contrast, we show that every Turing degree contains a set W (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Bounded Jump for the Bounded Turing Degrees.Bernard Anderson & Barbara Csima - 2014 - Notre Dame Journal of Formal Logic 55 (2):245-264.
    We define the bounded jump of $A$ by $A^{b}=\{x\in \omega \mid \exists i\leq x[\varphi_{i}\downarrow \wedge\Phi_{x}^{A\upharpoonright \!\!\!\upharpoonright \varphi_{i}}\downarrow ]\}$ and let $A^{nb}$ denote the $n$th bounded jump. We demonstrate several properties of the bounded jump, including the fact that it is strictly increasing and order-preserving on the bounded Turing degrees. We show that the bounded jump is related to the Ershov hierarchy. Indeed, for $n\geq2$ we have $X\leq_{bT}\emptyset ^{nb}\iff X$ is $\omega^{n}$-c.e. $\iff X\leq_{1}\emptyset ^{nb}$, extending the classical result that $X\leq_{bT}\emptyset '\iff (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the r.e. predecessors of d.r.e. degrees.Shamil Ishmukhametov - 1999 - Archive for Mathematical Logic 38 (6):373-386.
    Let d be a Turing degree containing differences of recursively enumerable sets (d.r.e.sets) and R[d] be the class of less than d r.e. degrees in whichd is relatively enumerable (r.e.). A.H.Lachlan proved that for any non-recursive d.r.e. d R[d] is not empty. We show that the r.e. degree defined by Lachlan for a d.r.e.set $D\in$ d is just the minimum degree in which D is r.e. Then we study for a given d.r.e. degree d class R[d] and show that there (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reals n-Generic Relative to Some Perfect Tree.Bernard A. Anderson - 2008 - Journal of Symbolic Logic 73 (2):401 - 411.
    We say that a real X is n-generic relative to a perfect tree T if X is a path through T and for all $\Sigma _{n}^{0}(T)$ sets S, there exists a number k such that either X|k ∈ S or for all σ ∈ T extending X|k we have σ ∉ S. A real X is n-generic relative to some perfect tree if there exists such a T. We first show that for every number n all but countably many reals (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong Jump-Traceability.Noam Greenberg & Dan Turetsky - 2018 - Bulletin of Symbolic Logic 24 (2):147-164.
    We review the current knowledge concerning strong jump-traceability. We cover the known results relating strong jump-traceability to randomness, and those relating it to degree theory. We also discuss the techniques used in working with strongly jump-traceable sets. We end with a section of open questions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Members of countable π10 classes.Douglas Cenzer, Peter Clote, Rick L. Smith, Robert I. Soare & Stanley S. Wainer - 1986 - Annals of Pure and Applied Logic 31:145-163.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Lowness for genericity.Liang Yu - 2006 - Archive for Mathematical Logic 45 (2):233-238.
    We study lowness for genericity. We show that there exists no Turing degree which is low for 1-genericity and all of computably traceable degrees are low for weak 1-genericity.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Embedding and Coding below a 1-Generic Degree.Noam Greenberg & Antonio Montalbán - 2003 - Notre Dame Journal of Formal Logic 44 (4):200-216.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Completing pseudojump operators.R. Coles, R. Downey, C. Jockusch & G. LaForte - 2005 - Annals of Pure and Applied Logic 136 (3):297-333.
    We investigate operators which take a set X to a set relatively computably enumerable in and above X by studying which such sets X can be so mapped into the Turing degree of K. We introduce notions of nontriviality for such operators, and use these to study which additional properties can be required of sets which can be completed to the jump by given operators of this kind.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Nullifying randomness and genericity using symmetric difference.Rutger Kuyper & Joseph S. Miller - 2017 - Annals of Pure and Applied Logic 168 (9):1692-1699.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Splitting theorems in recursion theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.
    A splitting of an r.e. set A is a pair A1, A2 of disjoint r.e. sets such that A1 A2 = A. Theorems about splittings have played an important role in recursion theory. One of the main reasons for this is that a splitting of A is a decomposition of A in both the lattice, , of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable degrees . Thus splitting theor ems have been used to obtain results about (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Conjectures and questions from Gerald Sacks's Degrees of Unsolvability.Richard A. Shore - 1997 - Archive for Mathematical Logic 36 (4-5):233-253.
    We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Isolation in the CEA hierarchy.Geoffrey LaForte - 2005 - Archive for Mathematical Logic 44 (2):227-244.
    Examining various kinds of isolation phenomena in the Turing degrees, I show that there are, for every n>0, (n+1)-c.e. sets isolated in the n-CEA degrees by n-c.e. sets below them. For n≥1 such phenomena arise below any computably enumerable degree, and conjecture that this result holds densely in the c.e. degrees as well. Surprisingly, such isolation pairs also exist where the top set has high degree and the isolating set is low, although the complete situation for jump classes remains unknown.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Then-rea enumeration degrees are dense.Alistair H. Lachlan & Richard A. Shore - 1992 - Archive for Mathematical Logic 31 (4):277-285.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • $\Pi _{1}^{0}$ Classes and Strong Degree Spectra of Relations.John Chisholm, Jennifer Chubb, Valentina S. Harizanov, Denis R. Hirschfeldt, Carl G. Jockusch, Timothy McNicholl & Sarah Pingrey - 2007 - Journal of Symbolic Logic 72 (3):1003 - 1018.
    We study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear ordering. Countable $\Pi _{1}^{0}$ subsets of 2ω and Kolmogorov complexity play a major role in the proof.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On relative enumerability of Turing degrees.Shamil Ishmukhametov - 2000 - Archive for Mathematical Logic 39 (3):145-154.
    Let d be a Turing degree, R[d] and Q[d] denote respectively classes of recursively enumerable (r.e.) and all degrees in which d is relatively enumerable. We proved in Ishmukhametov [1999] that there is a degree d containing differences of r.e.sets (briefly, d.r.e.degree) such that R[d] possess a least elementm $>$ 0. Now we show the existence of a d.r.e. d such that R[d] has no a least element. We prove also that for any REA-degree d below 0 $'$ the class (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A non-inversion theorem for the jump operator.Richard A. Shore - 1988 - Annals of Pure and Applied Logic 40 (3):277-303.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • 2-Minimality, jump classes and a note on natural definability.Mingzhong Cai - 2014 - Annals of Pure and Applied Logic 165 (2):724-741.
    We show that there is a generalized high degree which is a minimal cover of a minimal degree. This is the highest jump class one can reach by finite iterations of minimality. This result also answers an old question by Lerman.
    Download  
     
    Export citation  
     
    Bookmark  
  • Turing reducibility in the fine hierarchy.Alexander G. Melnikov, Victor L. Selivanov & Mars M. Yamaleev - 2020 - Annals of Pure and Applied Logic 171 (7):102766.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bounded low and high sets.Bernard A. Anderson, Barbara F. Csima & Karen M. Lange - 2017 - Archive for Mathematical Logic 56 (5-6):507-521.
    Anderson and Csima :245–264, 2014) defined a jump operator, the bounded jump, with respect to bounded Turing reducibility. They showed that the bounded jump is closely related to the Ershov hierarchy and that it satisfies an analogue of Shoenfield jump inversion. We show that there are high bounded low sets and low bounded high sets. Thus, the information coded in the bounded jump is quite different from that of the standard jump. We also consider whether the analogue of the Jump (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Local definitions in degeree structures: The Turing jump, hyperdegrees and beyond.Richard A. Shore - 2007 - Bulletin of Symbolic Logic 13 (2):226-239.
    There are $\Pi_5$ formulas in the language of the Turing degrees, D, with ≤, ∨ and $\vedge$ , that define the relations $x" \leq y"$ , x" = y" and so $x \in L_{2}(y)=\{x\geqy|x"=y"\}$ in any jump ideal containing $0^(\omega)$ . There are also $\Sigma_6$ & $\Pi_6$ and $\Pi_8$ formulas that define the relations w = x" and w = x', respectively, in any such ideal I. In the language with just ≤ the quantifier complexity of each of these definitions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degree structures: Local and global investigations.Richard A. Shore - 2006 - Bulletin of Symbolic Logic 12 (3):369-389.
    The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead.Institutionally, it was an honor to serve as President of the Association and I want to thank my teachers and predecessors for guidance and advice and my fellow officers and our publisher for their work and support. To all of the members who answered my calls to chair or serve on this or that committee, I offer my thanks as well. Your (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Interpolating d-r.e. and REA degrees between r.e. degrees.Marat Arslanov, Steffen Lempp & Richard A. Shore - 1996 - Annals of Pure and Applied Logic 78 (1-3):29-56.
    We provide three new results about interpolating 2-r.e. or 2-REA degrees between given r.e. degrees: Proposition 1.13. If c h are r.e. , c is low and h is high, then there is an a h which is REA in c but not r.e. Theorem 2.1. For all high r.e. degrees h g there is a properly d-r.e. degree a such that h a g and a is r.e. in h . Theorem 3.1. There is an incomplete nonrecursive r.e. A (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Direct and local definitions of the Turing jump.Richard A. Shore - 2007 - Journal of Mathematical Logic 7 (2):229-262.
    We show that there are Π5 formulas in the language of the Turing degrees, [Formula: see text], with ≤, ∨ and ∧, that define the relations x″ ≤ y″, x″ = y″ and so {x ∈ L2 = x ≥ y|x″ = y″} in any jump ideal containing 0. There are also Σ6&Π6 and Π8 formulas that define the relations w = x″ and w = x', respectively, in any such ideal [Formula: see text]. In the language with just ≤ (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Iterated relative recursive enumerability.Peter A. Cholak & Peter G. Hinman - 1994 - Archive for Mathematical Logic 33 (5):321-346.
    A result of Soare and Stob asserts that for any non-recursive r.e. setC, there exists a r.e.[C] setA such thatA⊕C is not of r.e. degree. A setY is called [of]m-REA (m-REA[C] [degree] iff it is [Turing equivalent to] the result of applyingm-many iterated ‘hops’ to the empty set (toC), where a hop is any function of the formX→X ⊕W e X . The cited result is the special casem=0,n=1 of our Theorem. Form=0,1, and any (m+1)-REA setC, ifC is not ofm-REA (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The n-r.E. Degrees: Undecidability and σ1 substructures.Mingzhong Cai, Richard A. Shore & Theodore A. Slaman - 2012 - Journal of Mathematical Logic 12 (1):1250005-.
    We study the global properties of [Formula: see text], the Turing degrees of the n-r.e. sets. In Theorem 1.5, we show that the first order of [Formula: see text] is not decidable. In Theorem 1.6, we show that for any two n and m with n < m, [Formula: see text] is not a Σ1-substructure of [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   2 citations