Switch to: Citations

Add references

You must login to add references.
  1. The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
    The Lévy-Solovay Theorem [8] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Supercompactness and Measurable Limits of Strong Cardinals.Arthur W. Apter - 2001 - Journal of Symbolic Logic 66 (2):629-639.
    In this paper, two theorems concerning measurable limits of strong cardinals and supercompactness are proven. This generalizes earlier work, both individual and joint with Shelah.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some structural results concerning supercompact cardinals.Arthur W. Apter - 2001 - Journal of Symbolic Logic 66 (4):1919-1927.
    We show how the forcing of [5] can be iterated so as to get a model containing supercompact cardinals in which every measurable cardinal δ is δ + supercompact. We then apply this iteration to prove three additional theorems concerning the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Indestructibility and the level-by-level agreement between strong compactness and supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.
    Can a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Failure of GCH and the level by level equivalence between strong compactness and supercompactness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (6):587.
    We force and obtain three models in which level by level equivalence between strong compactness and supercompactness holds and in which, below the least supercompact cardinal, GCH fails unboundedly often. In two of these models, GCH fails on a set having measure 1 with respect to certain canonical measures. There are no restrictions in all of our models on the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An Easton theorem for level by level equivalence.Arthur W. Apter - 2005 - Mathematical Logic Quarterly 51 (3):247-253.
    We establish an Easton theorem for the least supercompact cardinal that is consistent with the level by level equivalence between strong compactness and supercompactness. In both our ground model and the model witnessing the conclusions of our theorem, there are no restrictions on the structure of the class of supercompact cardinals. We also briefly indicate how our methods of proof yield an Easton theorem that is consistent with the level by level equivalence between strong compactness and supercompactness in a universe (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327-359.
    Download  
     
    Export citation  
     
    Bookmark   68 citations