Switch to: Citations

Add references

You must login to add references.
  1. On the Plurality of Worlds.David Lewis - 1986 - Revue Philosophique de la France Et de l'Etranger 178 (3):388-390.
    Download  
     
    Export citation  
     
    Bookmark   2839 citations  
  • Structuralism reconsidered.Fraser MacBride - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 563--589.
    The basic relations and functions that mathematicians use to identify mathematical objects fail to settle whether mathematical objects of one kind are identical to or distinct from objects of an apparently different kind, and what, if any, intrinsic properties mathematical objects possess. According to one influential interpretation of mathematical discourse, this is because the objects under study are themselves incomplete; they are positions or akin to positions in patterns or structures. Two versions of this idea are examined. It is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • An “I” for an I: Singular terms, uniqueness, and reference.Stewart Shapiro - 2012 - Review of Symbolic Logic 5 (3):380-415.
    There is an interesting logical/semantic issue with some mathematical languages and theories. In the language of (pure) complex analysis, the two square roots of i’ manage to pick out a unique object? This is perhaps the most prominent example of the phenomenon, but there are some others. The issue is related to matters concerning the use of definite descriptions and singular pronouns, such as donkey anaphora and the problem of indistinguishable participants. Taking a cue from some work in linguistics and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Identity, indiscernibility, and Ante Rem structuralism: The tale of I and –I.Stewart Shapiro - 2008 - Philosophia Mathematica 16 (3):285-309.
    Some authors have claimed that ante rem structuralism has problems with structures that have indiscernible places. In response, I argue that there is no requirement that mathematical objects be individuated in a non-trivial way. Metaphysical principles and intuitions to the contrary do not stand up to ordinary mathematical practice, which presupposes an identity relation that, in a sense, cannot be defined. In complex analysis, the two square roots of –1 are indiscernible: anything true of one of them is true of (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Essence and modality.Kit Fine - 1994 - Philosophical Perspectives 8 (Logic and Language):1-16.
    It is my aim in this paper to show that the contemporary assimilation of essence to modality is fundamentally misguided and that, as a consequence, the corresponding conception of metaphysics should be given up. It is not my view that the modal account fails to capture anything which might reasonably be called a concept of essence. My point, rather, is that the notion of essence which is of central importance to the metaphysics of identity is not to be understood in (...)
    Download  
     
    Export citation  
     
    Bookmark   938 citations  
  • Structuralism and the notion of dependence.Øystein Linnebo - 2008 - Philosophical Quarterly 58 (230):59-79.
    This paper has two goals. The first goal is to show that the structuralists’ claims about dependence are more significant to their view than is generally recognized. I argue that these dependence claims play an essential role in the most interesting and plausible characterization of this brand of structuralism. The second goal is to defend a compromise view concerning the dependence relations that obtain between mathematical objects. Two extreme views have tended to dominate the debate, namely the view that all (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Three varieties of mathematical structuralism.Geoffrey Hellman - 2001 - Philosophia Mathematica 9 (2):184-211.
    Three principal varieties of mathematical structuralism are compared: set-theoretic structuralism (‘STS’) using model theory, Shapiro's ante rem structuralism invoking sui generis universals (‘SGS’), and the author's modal-structuralism (‘MS’) invoking logical possibility. Several problems affecting STS are discussed concerning, e.g., multiplicity of universes. SGS overcomes these; but it faces further problems of its own, concerning, e.g., the very intelligibility of purely structural objects and relations. MS, in contrast, overcomes or avoids both sets of problems. Finally, it is argued that the modality (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   587 citations  
  • What we talk about when we talk about numbers.Richard Pettigrew - 2018 - Annals of Pure and Applied Logic 169 (12):1437-1456.
    In this paper, I describe and motivate a new species of mathematical structuralism, which I call Instrumental Nominalism about Set-Theoretic Structuralism. As the name suggests, this approach takes standard Set-Theoretic Structuralism of the sort championed by Bourbaki and removes its ontological commitments by taking an instrumental nominalist approach to that ontology of the sort described by Joseph Melia and Gideon Rosen. I argue that this avoids all of the problems that plague other versions of structuralism.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Neologicism, Frege's Constraint, and the Frege‐Heck Condition.Eric Snyder, Richard Samuels & Stewart Shapiro - 2018 - Noûs 54 (1):54-77.
    One of the more distinctive features of Bob Hale and Crispin Wright’s neologicism about arithmetic is their invocation of Frege’s Constraint – roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. In particular, they maintain that, if adopted, Frege’s Constraint adjudicates in favor of their preferred foundation – Hume’s Principle – and against alternatives, such as the Dedekind-Peano axioms. In what follows we establish two main claims. First, we show (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The semantic plights of the ante-rem structuralist.Bahram Assadian - 2018 - Philosophical Studies 175 (12):1-20.
    A version of the permutation argument in the philosophy of mathematics leads to the thesis that mathematical terms, contrary to appearances, are not genuine singular terms referring to individual objects; they are purely schematic or variables. By postulating ‘ante-rem structures’, the ante-rem structuralist aims to defuse the permutation argument and retain the referentiality of mathematical terms. This paper presents two semantic problems for the ante- rem view: (1) ante-rem structures are themselves subject to the permutation argument; (2) the ante-rem structuralist (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • What Are Structural Properties?†.Johannes Korbmacher & Georg Schiemer - 2018 - Philosophia Mathematica 26 (3):295-323.
    Informally, structural properties of mathematical objects are usually characterized in one of two ways: either as properties expressible purely in terms of the primitive relations of mathematical theories, or as the properties that hold of all structurally similar mathematical objects. We present two formal explications corresponding to these two informal characterizations of structural properties. Based on this, we discuss the relation between the two explications. As will be shown, the two characterizations do not determine the same class of mathematical properties. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • XIV*—Ontological Dependence.Kit Fine - 1995 - Proceedings of the Aristotelian Society 95 (1):269-290.
    Kit Fine; XIV*—Ontological Dependence, Proceedings of the Aristotelian Society, Volume 95, Issue 1, 1 June 1995, Pages 269–290, https://doi.org/10.1093/aristote.
    Download  
     
    Export citation  
     
    Bookmark   282 citations  
  • Unified Foundations for Essence and Ground.Kit Fine - 2015 - Journal of the American Philosophical Association 1 (2):296-311.
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • Neo-Fregean Foundations for Real Analysis: Some Reflections on Frege's Constraint.Crispin Wright - 2000 - Notre Dame Journal of Formal Logic 41 (4):317--334.
    We now know of a number of ways of developing real analysis on a basis of abstraction principles and second-order logic. One, outlined by Shapiro in his contribution to this volume, mimics Dedekind in identifying the reals with cuts in the series of rationals under their natural order. The result is an essentially structuralist conception of the reals. An earlier approach, developed by Hale in his "Reals byion" program differs by placing additional emphasis upon what I here term Frege's Constraint, (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Frege meets dedekind: A neologicist treatment of real analysis.Stewart Shapiro - 2000 - Notre Dame Journal of Formal Logic 41 (4):335--364.
    This paper uses neo-Fregean-style abstraction principles to develop the integers from the natural numbers (assuming Hume’s principle), the rational numbers from the integers, and the real numbers from the rationals. The first two are first-order abstractions that treat pairs of numbers: (DIF) INT(a,b)=INT(c,d) ≡ (a+d)=(b+c). (QUOT) Q(m,n)=Q(p,q) ≡ (n=0 & q=0) ∨ (n≠0 & q≠0 & m⋅q=n⋅p). The development of the real numbers is an adaption of the Dedekind program involving “cuts” of rational numbers. Let P be a property (of (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Structuralism's unpaid epistemological debts.Bob Hale - 1996 - Philosophia Mathematica 4 (2):124--47.
    One kind of structuralism holds that mathematics is about structures, conceived as a type of abstract entity. Another denies that it is about any distinctively mathematical entities at all—even abstract structures; rather it gives purely general information about what holds of any collection of entities conforming to the axioms of the theory. Of these, pure structuralism is most plausibly taken to enjoy significant advantages over platonism. But in what appears to be its most plausible—modalised—version, even restricted to elementary arithmetic, it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)WRIGHT, C.: "Frege's Conception of Numbers as Objects". [REVIEW]A. Hazen - 1985 - Australasian Journal of Philosophy 63:251.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two types of abstraction for structuralism.Øystein Linnebo & Richard Pettigrew - 2014 - Philosophical Quarterly 64 (255):267-283.
    If numbers were identified with any of their standard set-theoretic realizations, then they would have various non-arithmetical properties that mathematicians are reluctant to ascribe to them. Dedekind and later structuralists conclude that we should refrain from ascribing to numbers such ‘foreign’ properties. We first rehearse why it is hard to provide an acceptable formulation of this conclusion. Then we investigate some forms of abstraction meant to purge mathematical objects of all ‘foreign’ properties. One form is inspired by Frege; the other (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Abstraction and additional nature.Bob Hale & Crispin Wright - 2008 - Philosophia Mathematica 16 (2):182-208.
    What is wrong with abstraction’, Michael Potter and Peter Sullivan explain a further objection to the abstractionist programme in the foundations of mathematics which they first presented in their ‘Hale on Caesar’ and which they believe our discussion in The Reason's Proper Study misunderstood. The aims of the present note are: To get the character of this objection into sharper focus; To explore further certain of the assumptions—primarily, about reference-fixing in mathematics, about certain putative limitations of abstractionist set theory, and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Frege: Philosophy of Mathematics.Michael DUMMETT - 1991 - Philosophy 68 (265):405-411.
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part B†.Hannes Leitgeb - 2021 - Philosophia Mathematica 29 (1):64-87.
    This is Part B of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A motivated an understanding of unlabeled graphs as structures sui generis and developed a corresponding axiomatic theory of unlabeled graphs. Part B turns to the philosophical interpretation and assessment of the theory: it points out how the theory avoids well-known problems concerning identity, objecthood, and reference that have been attributed to non-eliminative structuralism. The part (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2019 - British Journal for the Philosophy of Science 70 (4):1201-1226.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this article, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Book Review: Stewart Shapiro. Philosophy of Mathematics: Structure and Ontology. [REVIEW]John P. Burgess - 1999 - Notre Dame Journal of Formal Logic 40 (2):283-291.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Structure and identity.Stewart Shapiro - 2006 - In Fraser MacBride (ed.), Identity and modality. New York: Oxford University Press. pp. 34--69.
    According to ante rem structuralism a branch of mathematics, such as arithmetic, is about a structure, or structures, that exist independent of the mathematician, and independent of any systems that exemplify the structure. A structure is a universal of sorts: structure is to exemplified system as property is to object. So ante rem structuralist is a form of ante rem realism concerning universals. Since the appearance of my Philosophy of mathematics: Structure and ontology, a number of criticisms of the idea (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Dedekind's structuralism: An interpretation and partial defense.Erich H. Reck - 2003 - Synthese 137 (3):369 - 419.
    Various contributors to recent philosophy of mathematics havetaken Richard Dedekind to be the founder of structuralismin mathematics. In this paper I examine whether Dedekind did, in fact, hold structuralist views and, insofar as that is the case, how they relate to the main contemporary variants. In addition, I argue that his writings contain philosophical insights that are worth reexamining and reviving. The discussion focusses on Dedekind''s classic essay Was sind und was sollen die Zahlen?, supplemented by evidence from Stetigkeit und (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • On the Philosophical Significance of Frege’s Constraint.Andrea Sereni - 2019 - Philosophia Mathematica 27 (2):244–275.
    Foundational projects disagree on whether pure and applied mathematics should be explained together. Proponents of unified accounts like neologicists defend Frege’s Constraint (FC), a principle demanding that an explanation of applicability be provided by mathematical definitions. I reconsider the philosophical import of FC, arguing that usual conceptions are biased by ontological assumptions. I explore more reasonable weaker variants — Moderate and Modest FC — arguing against common opinion that ante rem structuralism (and other) views can meet them. I dispel doubts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Mathematics without Numbers: Towards a Modal-Structural Interpretation.Bob Hale & Geoffrey Hellman - 1992 - Philosophical Review 101 (4):919.
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2000 - Philosophical Quarterly 50 (198):120-123.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2017 - British Journal for the Philosophy of Science:axy004.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this paper, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations