Switch to: References

Add citations

You must login to add citations.
  1. Essence in abundance.Alexander Skiles - 2015 - Canadian Journal of Philosophy 45 (1):100-112.
    Fine is widely thought to have refuted the simple modal account of essence, which takes the essential properties of a thing to be those it cannot exist without exemplifying. Yet, a number of philosophers have suggested resuscitating the simple modal account by appealing to distinctions akin to the distinction Lewis draws between sparse and abundant properties, treating only those in the former class as candidates for essentiality. I argue that ‘sparse modalism’ succumbs to counterexamples similar to those originally posed by (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Structuralism and Its Ontology.Marc Gasser - 2015 - Ergo: An Open Access Journal of Philosophy 2:1-26.
    A prominent version of mathematical structuralism holds that mathematical objects are at bottom nothing but "positions in structures," purely relational entities without any sort of nature independent of the structure to which they belong. Such an ontology is often presented as a response to Benacerraf's "multiple reductions" problem, or motivated on hermeneutic grounds, as a faithful representation of the discourse and practice of mathematics. In this paper I argue that there are serious difficulties with this kind of view: its proponents (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts of the physical world and (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Invariants and Mathematical Structuralism.Georg Schiemer - 2014 - Philosophia Mathematica 22 (1):70-107.
    The paper outlines a novel version of mathematical structuralism related to invariants. The main objective here is twofold: first, to present a formal theory of structures based on the structuralist methodology underlying work with invariants. Second, to show that the resulting framework allows one to model several typical operations in modern mathematical practice: the comparison of invariants in terms of their distinctive power, the bundling of incomparable invariants to increase their collective strength, as well as a heuristic principle related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Exhaustion of Mathematical Entities by Structures.Adrian Heathcote - 2014 - Axiomathes 24 (2):167-180.
    There has been considerable discussion in the literature of one kind of identity problem that mathematical structuralism faces: the automorphism problem, in which the structure is unable to individuate the mathematical entities in its domain. Shapiro (Philos Math 16(3):285–309, 2008) has partly responded to these concerns. But I argue here that the theory faces an even more serious kind of identity problem, which the theory can’t overcome staying within its remit. I give two examples to make the point.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Priority and Particle Physics: Ontic Structural Realism as a Fundamentality Thesis.Kerry McKenzie - 2014 - British Journal for the Philosophy of Science 65 (2):353-380.
    In this article, I address concerns that the ontological priority claims definitive of ontic structural realism are as they stand unclear, and I do so by placing these claims on a more rigorous formal footing than they typically have been hitherto. I first of all argue that Kit Fine’s analysis of ontological dependence furnishes us with an ontological priority relation that is particularly apt for structuralism. With that in place, and with reference to two case studies prominent within the structuralist (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • How to be a minimalist about sets.Luca Incurvati - 2012 - Philosophical Studies 159 (1):69-87.
    According to the iterative conception of set, sets can be arranged in a cumulative hierarchy divided into levels. But why should we think this to be the case? The standard answer in the philosophical literature is that sets are somehow constituted by their members. In the first part of the paper, I present a number of problems for this answer, paying special attention to the view that sets are metaphysically dependent upon their members. In the second part of the paper, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The interdependence of structure, objects and dependence.Steven French - 2010 - Synthese 175 (S1):89 - 109.
    According to 'Ontic Structural Realism' (OSR), physical objects—qua metaphysical entities—should be reconceptualised, or, more strongly, eliminated in favour of the relevant structures. In this paper I shall attempt to articulate the relationship between these putative objects and structures in terms of certain accounts of metaphysical dependence currently available. This will allow me to articulate the differences between the different forms of OSR and to argue in favour of the 'eliminativist' version. A useful context is provided by Floridi's account of the (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Ontological dependence.Fabrice Correia - 2008 - Philosophy Compass 3 (5):1013-1032.
    'Ontological dependence' is a term of philosophical jargon which stands for a rich family of properties and relations, often taken to be among the most fundamental ontological properties and relations. Notions of ontological dependence are usually thought of as 'carving reality at its ontological joints', and as marking certain forms of ontological 'non-self-sufficiency'. The use of notions of dependence goes back as far as Aristotle's characterization of substances, and these notions are still widely used to characterize other concepts and to (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • (1 other version)Between theory and experiment: model use in dark matter detection.Rami Jreige - 2024 - European Journal for Philosophy of Science 14 (4):1-25.
    There is a complex interplay between the models in dark matter detection experiments that have led to a difficulty in interpreting the results of the experiments and ascertain whether we have detected the particle or not. The aim of this paper is to categorise and explore the different models used in said experiments, by emphasizing the distinctions and dependencies among different types of models used in this field. With a background theory, models are categorised into four distinct types: background theory, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstraction and grounding.Louis deRosset & Øystein Linnebo - 2023 - Philosophy and Phenomenological Research 109 (1):357-390.
    The idea that some objects are metaphysically “cheap” has wide appeal. An influential version of the idea builds on abstractionist views in the philosophy of mathematics, on which numbers and other mathematical objects are abstracted from other phenomena. For example, Hume's Principle states that two collections have the same number just in case they are equinumerous, in the sense that they can be correlated one‐to‐one:. The principal aim of this article is to use the notion of grounding to develop this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The insubstantiality of mathematical objects as positions in structures.Bahram Assadian - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 20.
    The realist versions of mathematical structuralism are often characterized by what I call ‘the insubstantiality thesis’, according to which mathematical objects, being positions in structures, have no non-structural properties: they are purely structural objects. The thesis has been criticized for being inconsistent or descriptively inadequate. In this paper, by implementing the resources of a real-definitional account of essence in the context of Fregean abstraction principles, I offer a version of structuralism – essentialist structuralism – which validates a weaker version of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Chains of Being: Infinite Regress, Circularity, and Metaphysical Explanation.Ross P. Cameron - 2022 - Oxford: Oxford University Press.
    'Chains of Being' argues that there can be infinite chains of dependence or grounding. Cameron also defends the view that there can be circular relations of ontological dependence or grounding, and uses these claims to explore issues in logic and ontology.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Collective Abstraction.Jon Erling Litland - 2022 - Philosophical Review 131 (4):453-497.
    This paper develops a novel theory of abstraction—what we call collective abstraction. The theory solves a notorious problem for noneliminative structuralism. The noneliminative structuralist holds that in addition to various isomorphic systems there is a pure structure that can be abstracted from each of these systems; but existing accounts of abstraction fail for nonrigid systems like the complex numbers. The problem with the existing accounts is that they attempt to define a unique abstraction operation. The theory of collective abstraction instead (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Panpsychism, Emergence, and Pluralities: Reply to Bohn.Donnchadh O’Conaill - 2022 - Australasian Journal of Philosophy 100 (2):419-424.
    ABSTRACT Einar Bohn [AJP 2019] has proposed a version of panpsychism on which consciousness is fundamentally a property of pluralities of basic objects. I argue that this pluralized panpsychism is structurally similar to emergentism, and faces the problem of explaining how a plurality of basic objects could be a subject of experiences. Because of these issues, pluralized panpsychism is not a substantial improvement on orthodox panpsychism.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Structuralist approaches to Bohmian mechanics.Lorenzo Lorenzetti - 2022 - Synthese 200 (1):1-15.
    Lam and Esfeld have argued that, within Bohmian mechanics, the wave function can be interpreted as a physical structure instantiated by the fundamental particles posited by the theory. Further, to characterize the nature of this structure, they appeal to the framework of Ontic Structural Realism, thereby proposing a structuralist interpretation of Bohmian mechanics. However, I shall point out that OSR denotes a family of distinct views, each of which maintains a different account about the relation between structures and objects, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part B†.Hannes Leitgeb - 2021 - Philosophia Mathematica 29 (1):64-87.
    This is Part B of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A motivated an understanding of unlabeled graphs as structures sui generis and developed a corresponding axiomatic theory of unlabeled graphs. Part B turns to the philosophical interpretation and assessment of the theory: it points out how the theory avoids well-known problems concerning identity, objecthood, and reference that have been attributed to non-eliminative structuralism. The part (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2019 - British Journal for the Philosophy of Science 70 (4):1201-1226.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this article, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • From ontic structural realism to metaphysical coherentism.Matteo Morganti - 2018 - European Journal for Philosophy of Science 9 (1):1-20.
    The present paper argues that the typical structuralist claims according to which invariances, symmetries and the like are fundamental – especially in physics – should not be understood in terms of physical relations being fundamental. Rather, they should be understood in terms of ‘metaphysical coherentism’ - the idea that object-like parts of reality exhibit symmetric relations of ontological dependence. The view is developed in some detail, in particular by showing that i) symmetric ontological dependence does not necessarily lead to uninformative (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Non-eliminative Structuralism, Fregean Abstraction, and Non-rigid Structures.John Wigglesworth - 2018 - Erkenntnis 86 (1):113-127.
    Linnebo and Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They recognize that this version of structuralism is vulnerable to the well-known problem of non-rigid structures. This paper offers a solution to the problem for this version of structuralism. The solution involves expanding the languages used to describe mathematical structures. We then argue that this solution is philosophically acceptable to those who endorse mathematical structuralism based on Fregean abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Viewing-as explanations and ontic dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this claim (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Claudio Calosi & Matteo Morganti - 2018 - British Journal for the Philosophy of Science:axy064.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Inferentialism and Structuralism: A Tale of Two Theories.Ryan Mark Nefdt - 2018 - Logique Et Analyse 61 (244):489-512.
    This paper aims to unite two seemingly disparate themes in the philosophy of mathematics and language respectively, namely ante rem structuralism and inferentialism. My analysis begins with describing both frameworks in accordance with their genesis in the work of Hilbert. I then draw comparisons between these philosophical views in terms of their similar motivations and similar objections to the referential orthodoxy. I specifically home in on two points of comparison, namely the role of norms and the relation of ontological dependence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Where Are You Going, Metaphysics, and How are You Getting There? - Grounding Theory as a Case Study.Gila Sher - 2019 - In Quo Vadis, Metaphysics? de Gruyter Studium. pp. 37-57.
    The viability of metaphysics as a field of knowledge has been challenged time and again. But in spite of the continuing tendency to dismiss metaphysics, there has been considerable progress in this field in the 20th- and 21st- centuries. One of the newest − though, in a sense, also oldest − frontiers of metaphysics is the grounding project. In this paper I raise a methodological challenge to the new grounding project and propose a constructive solution. Both the challenge and its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cassirer and the Structural Turn in Modern Geometry.Georg Schiemer - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The paper investigates Ernst Cassirer’s structuralist account of geometrical knowledge developed in his Substanzbegriff und Funktionsbegriff. The aim here is twofold. First, to give a closer study of several developments in projective geometry that form the direct background for Cassirer’s philosophical remarks on geometrical concept formation. Specifically, the paper will survey different attempts to justify the principle of duality in projective geometry as well as Felix Klein’s generalization of the use of geometrical transformations in his Erlangen program. The second aim (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • What Are Structural Properties?†.Johannes Korbmacher & Georg Schiemer - 2018 - Philosophia Mathematica 26 (3):295-323.
    Informally, structural properties of mathematical objects are usually characterized in one of two ways: either as properties expressible purely in terms of the primitive relations of mathematical theories, or as the properties that hold of all structurally similar mathematical objects. We present two formal explications corresponding to these two informal characterizations of structural properties. Based on this, we discuss the relation between the two explications. As will be shown, the two characterizations do not determine the same class of mathematical properties. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structural-Abstraction Principles.Graham Leach-Krouse - 2015 - Philosophia Mathematica:nkv033.
    In this paper, I present a class of ‘structural’ abstraction principles, and describe how they are suggested by some features of Cantor's and Dedekind's approach to abstraction. Structural abstraction is a promising source of mathematically tractable new axioms for the neo-logicist. I illustrate this by showing, first, how a theorem of Shelah gives a sufficient condition for consistency in the structural setting, solving what neo-logicists call the ‘bad company’ problem for structural abstraction. Second, I show how, in the structural setting, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Do Objects Depend on Structures?Johanna Wolff - 2012 - British Journal for the Philosophy of Science 63 (3):607-625.
    Ontic structural realists hold that structure is all there is, or at least all there is fundamentally. This thesis has proved to be puzzling: What exactly does it say about the relationship between objects and structures? In this article, I look at different ways of articulating ontic structural realism in terms of the relation between structures and objects. I show that objects cannot be reduced to structure, and argue that ontological dependence cannot be used to establish strong forms of structural (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2017 - British Journal for the Philosophy of Science:axy004.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this paper, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Epsilon-Reconstruction of Theories and Scientific Structuralism.Georg Schiemer & Norbert Gratzl - 2016 - Erkenntnis 81 (2):407-432.
    Rudolf Carnap’s mature work on the logical reconstruction of scientific theories consists of two components. The first is the elimination of the theoretical vocabulary of a theory in terms of its Ramsification. The second is the reintroduction of the theoretical terms through explicit definitions in a language containing an epsilon operator. This paper investigates Carnap’s epsilon-reconstruction of theories in the context of pure mathematics. The main objective here is twofold: first, to specify the epsilon logic underlying his suggested definition of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Philosophy of Science A Personal Peek into the Future.Steven French & Michela Massimi - 2013 - Metaphilosophy 44 (3):230-240.
    In this opinion piece, the authors offer their personal and idiosyncratic views of the future of the philosophy of science, focusing on its relationship with the history of science and metaphysics, respectively. With regard to the former, they suggest that the Kantian tradition might be drawn upon both to render the history and philosophy of science more relevant to philosophy as a whole and to overcome the challenges posed by naturalism. When it comes to the latter, they suggest both that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Minimalism, Trivialism, Aristotelianism.Andrea Sereni & Luca Zanetti - 2023 - Theoria 89 (3):280-297.
    Minimalism and Trivialism are two recent forms of lightweight Platonism in the philosophy of mathematics: Minimalism is the view that mathematical objects arethinin the sense that “very little is required for their existence”, whereas Trivialism is the view that mathematical statements have trivial truth‐conditions, that is, that “nothing is required of the world in order for those conditions to be satisfied”. In order to clarify the relation between the mathematical and the non‐mathematical domain that these views envisage, it has recently (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Grounding, physicalism and necessity.Donnchadh O'Conaill - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 61 (7):713-730.
    Recent work on metaphysical grounding has suggested that physicalism can be characterised in terms of the mental facts being grounded in physical facts. It is often assumed that the full grounds of a fact metaphysically necessitate that fact. Therefore, it seems that if the physical grounds the mental, then the physical facts metaphysically necessitate the mental facts. Stefan Leuenberger argues that such a version of physicalism would be vulnerable to counterexamples. I shall outline a characterisation of grounding which appeals to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Antireductionism and Ordinals.Beau Madison Mount - 2019 - Philosophia Mathematica 27 (1):105-124.
    I develop a novel argument against the claim that ordinals are sets. In contrast to Benacerraf’s antireductionist argument, I make no use of covert epistemic assumptions. Instead, my argument uses considerations of ontological dependence. I draw on the datum that sets depend immediately and asymmetrically on their elements and argue that this datum is incompatible with reductionism, given plausible assumptions about the dependence profile of ordinals. In addition, I show that a structurally similar argument can be made against the claim (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • New Frontiers in Ground, Essence, and Modality: Introduction.Donnchadh Ó Conaill & Tuomas Tahko - 2021 - Synthese 198 (6):1219-1230.
    Ground, essence, and modality seem to have something to do with each other. Can we provide unified foundations for ground and essence, or should we treat each as primitives? Can modality be grounded in essence, or should essence be expressed in terms of modality? Does grounding entail necessitation? Are the notions of ground and essence univocal? This volume focuses on the links—or lack thereof—between these three notions, as well as the foundations of ground, essence, and modality more generally, bringing together (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Naturalizing Badiou: mathematical ontology and structural realism.Fabio Gironi - 2014 - New York: Palgrave-Macmillan.
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical structuralism today.Julian C. Cole - 2010 - Philosophy Compass 5 (8):689-699.
    Two topics figure prominently in recent discussions of mathematical structuralism: challenges to the purported metaphysical insight provided by sui generis structuralism and the significance of category theory for understanding and articulating mathematical structuralism. This article presents an overview of central themes related to these topics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Non-eliminative Structuralism, Fregean Abstraction, and Non-rigid Structures.John Wigglesworth - 2021 - Erkenntnis 86 (1):113-127.
    Linnebo and Pettigrew (Philos Q 64:267–283, 2014) have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They recognize that this version of structuralism is vulnerable to the well-known problem of non-rigid structures. This paper offers a solution to the problem for this version of structuralism. The solution involves expanding the languages used to describe mathematical structures. We then argue that this solution is philosophically acceptable to those who endorse mathematical structuralism based on Fregean abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Circular Discernment in Completely Extensive Structures and How to Avoid such Circles Generally.F. A. Muller - 2012 - Studia Logica 100 (5):947-952.
    In this journal (Studia Logica), D. Rizza [2010: 176] expounded a solution of what he called “the indiscernibility problem for ante rem structuralism”, which is the problem to make sense of the presence, in structures, of objects that are indiscernible yet distinct, by only appealing to what that structure provides. We argue that Rizza’s solution is circular and expound a different solution that not only solves the problem for completely extensive structures, treated by Rizza, but for nearly (but not) all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbertian Structuralism and the Frege-Hilbert Controversy†.Fiona T. Doherty - 2019 - Philosophia Mathematica 27 (3):335-361.
    ABSTRACT This paper reveals David Hilbert’s position in the philosophy of mathematics, circa 1900, to be a form of non-eliminative structuralism, predating his formalism. I argue that Hilbert withstands the pressing objections put to him by Frege in the course of the Frege-Hilbert controversy in virtue of this early structuralist approach. To demonstrate that this historical position deserves contemporary attention I show that Hilbertian structuralism avoids a recent wave of objections against non-eliminative structuralists to the effect that they cannot distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Frege Meets Aristotle: Points as Abstracts.Stewart Shapiro & Geoffrey Hellman - 2015 - Philosophia Mathematica:nkv021.
    There are a number of regions-based accounts of space/time, due to Whitehead, Roeper, Menger, Tarski, the present authors, and others. They all follow the Aristotelian theme that continua are not composed of points: each region has a proper part. The purpose of this note is to show how to recapture ‘points’ in such frameworks via Scottish neo-logicist abstraction principles. The results recapitulate some Aristotelian themes. A second agenda is to provide a new arena to help decide what is at stake (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Philosophy of Science A Personal Peek into the Future.Michela Massimi Steven French - 2013 - Metaphilosophy 44 (3):230-240.
    In this opinion piece, the authors offer their personal and idiosyncratic views of the future of the philosophy of science, focusing on its relationship with the history of science and metaphysics, respectively. With regard to the former, they suggest that the Kantian tradition might be drawn upon both to render the history and philosophy of science more relevant to philosophy as a whole and to overcome the challenges posed by naturalism. When it comes to the latter, they suggest both that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relationism and the Problem of Order.Michele Paolini Paoletti - 2023 - Acta Analytica 38 (2):245-273.
    Relationism holds that objects entirely depend on relations or that they must be eliminated in favour of the latter. In this article, I raise a problem for relationism. I argue that relationism cannot account for the order in which non-symmetrical relations apply to their relata. In Section 1, I introduce some concepts in the ontology of relations and define relationism. In Section 2, I present the Problem of Order for non-symmetrical relations, after distinguishing it from the Problem of Differential Application. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why genes are like lemons.F. Boem, E. Ratti, M. Andreoletti & G. Boniolo - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 57 (June):88-95.
    In the last few years, the lack of a unitary notion of gene across biological sciences has troubled the philosophy of biology community. However, the debate on this concept has remained largely historical or focused on particular cases presented by the scientific empirical advancements. Moreover, in the literature there are no explicit and reasonable arguments about why a philosophical clarification of the concept of gene is needed. In our paper, we claim that a philosophical clarification of the concept of gene (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations