Switch to: Citations

Add references

You must login to add references.
  1. Forcing in proof theory.Jeremy Avigad - 2004 - Bulletin of Symbolic Logic 10 (3):305-333.
    Paul Cohen’s method of forcing, together with Saul Kripke’s related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Simplified Lower Bounds for Propositional Proofs.Alasdair Urquhart & Xudong Fu - 1996 - Notre Dame Journal of Formal Logic 37 (4):523-544.
    This article presents a simplified proof of the result that bounded depth propositional proofs of the pigeonhole principle are exponentially large. The proof uses the new techniques for proving switching lemmas developed by Razborov and Beame. A similar result is also proved for some examples based on graphs.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Forcing in Finite Structures.Domenico Zambella - 1997 - Mathematical Logic Quarterly 43 (3):401-412.
    We present a simple and completely model-theoretical proof of a strengthening of a theorem of Ajtai: The independence of the pigeonhole principle from IΔ0. With regard to strength, the theorem proved here corresponds to the complexity/proof-theoretical results of [10] and [14], but a different combinatorics is used. Techniques inspired by Razborov [11] replace those derived from Håstad [8]. This leads to a much shorter and very direct construction.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The Complexity of Propositional Proofs.Nathan Segerlind - 1995 - Bulletin of Symbolic Logic 1 (4):425-467.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Forcing on bounded arithmetic II.Gaisi Takeuti & Masahiro Yasumoto - 1998 - Journal of Symbolic Logic 63 (3):860-868.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A new look at the interpolation problem.Jacques Stern - 1975 - Journal of Symbolic Logic 40 (1):1-13.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)The complexity of propositional proofs.Nathan Segerlind - 2007 - Bulletin of Symbolic Logic 13 (4):417-481.
    Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A Proof of the Independence of the Continuum Hypothesis.Dana Scott - 1968 - Journal of Symbolic Logic 33 (2):293-293.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Forcing and reducibilities.Piergiorgio Odifreddi - 1983 - Journal of Symbolic Logic 48 (2):288-310.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Forcing and reducibilities. II. forcing in fragments of analysis.Piergiorgio Odifreddi - 1983 - Journal of Symbolic Logic 48 (3):724-743.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forcing and reducibilities. III. forcing in fragments of set theory.Piergiorgio Odifreddi - 1983 - Journal of Symbolic Logic 48 (4):1013-1034.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Combinatorics of first order structures and propositional proof systems.Jan Krajíček - 2004 - Archive for Mathematical Logic 43 (4):427-441.
    We define the notion of a combinatorics of a first order structure, and a relation of covering between first order structures and propositional proof systems. Namely, a first order structure M combinatorially satisfies an L-sentence Φ iff Φ holds in all L-structures definable in M. The combinatorics Comb(M) of M is the set of all sentences combinatorially satisfied in M. Structure M covers a propositional proof system P iff M combinatorially satisfies all Φ for which the associated sequence of propositional (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Generic expansions of structures.Julia F. Knight - 1973 - Journal of Symbolic Logic 38 (4):561-570.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical foundations of proof complexity.Stephen Cook & Phuong Nguyen - 2011 - Bulletin of Symbolic Logic 17 (3):462-464.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Fifty years of the spectrum problem: survey and new results.Arnaud Durand, Neil D. Jones, Johann A. Makowsky & Malika More - 2012 - Bulletin of Symbolic Logic 18 (4):505-553.
    In 1952, Heinrich Scholz published a question in The Journal of Symbolic Logic asking for a characterization of spectra, i.e., sets of natural numbers that are the cardinalities of finite models of first order sentences. Günter Asser in turn asked whether the complement of a spectrum is always a spectrum. These innocent questions turned out to be seminal for the development of finite model theory and descriptive complexity. In this paper we survey developments over the last 50-odd years pertaining to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The relative efficiency of propositional proof systems.Stephen A. Cook & Robert A. Reckhow - 1979 - Journal of Symbolic Logic 44 (1):36-50.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Some remarks on lengths of propositional proofs.Samuel R. Buss - 1995 - Archive for Mathematical Logic 34 (6):377-394.
    We survey the best known lower bounds on symbols and lines in Frege and extended Frege proofs. We prove that in minimum length sequent calculus proofs, no formula is generated twice or used twice on any single branch of the proof. We prove that the number of distinct subformulas in a minimum length Frege proof is linearly bounded by the number of lines. Depthd Frege proofs ofm lines can be transformed into depthd proofs ofO(m d+1) symbols. We show that renaming (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Polynomial size proofs of the propositional pigeonhole principle.Samuel R. Buss - 1987 - Journal of Symbolic Logic 52 (4):916-927.
    Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege systems have an exponential speedup over resolution. We also discuss connections to provability in theories of bounded arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • First-Order Proof Theory of Arithmetic.Samuel R. Buss - 2000 - Bulletin of Symbolic Logic 6 (4):465-466.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On the correspondence between arithmetic theories and propositional proof systems – a survey.Olaf Beyersdorff - 2009 - Mathematical Logic Quarterly 55 (2):116-137.
    The purpose of this paper is to survey the correspondence between bounded arithmetic and propositional proof systems. In addition, it also contains some new results which have appeared as an extended abstract in the proceedings of the conference TAMC 2008 [11].Bounded arithmetic is closely related to propositional proof systems; this relation has found many fruitful applications. The aim of this paper is to explain and develop the general correspondence between propositional proof systems and arithmetic theories, as introduced by Krajíček and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)[Omnibus Review].Kenneth Kunen - 1969 - Journal of Symbolic Logic 34 (3):515-516.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Bounded arithmetic, propositional logic, and complexity theory.Jan Krajíček - 1995 - New York, NY, USA: Cambridge University Press.
    This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic, with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing open problems. An introduction to the basics of logic and complexity theory is followed by discussion of important results in propositional proof systems and systems of bounded arithmetic. More advanced topics are then treated, including polynomial simulations and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations