Switch to: Citations

Add references

You must login to add references.
  1. The Pointwise Ergodic Theorem in Subsystems of Second-Order Arithmetic.Ksenija Simic - 2007 - Journal of Symbolic Logic 72 (1):45 - 66.
    The pointwise ergodic theorem is nonconstructive. In this paper, we examine origins of this non-constructivity, and determine the logical strength of the theorem and of the auxiliary statements used to prove it. We discuss properties of integrable functions and of measure preserving transformations and give three proofs of the theorem, though mostly focusing on the one derived from the mean ergodic theorem. All the proofs can be carried out in ACA₀; moreover, the pointwise ergodic theorem is equivalent to (ACA) over (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Elimination of Skolem functions for monotone formulas in analysis.Ulrich Kohlenbach - 1998 - Archive for Mathematical Logic 37 (5-6):363-390.
    In this paper a new method, elimination of Skolem functions for monotone formulas, is developed which makes it possible to determine precisely the arithmetical strength of instances of various non-constructive function existence principles. This is achieved by reducing the use of such instances in a given proof to instances of certain arithmetical principles. Our framework are systems ${\cal T}^{\omega} :={\rm G}_n{\rm A}^{\omega} +{\rm AC}$ -qf $+\Delta$ , where (G $_n$ A $^{\omega})_{n \in {\Bbb N}}$ is a hierarchy of (weak) subsystems (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Constructive View on Ergodic Theorems.Bas Spitters - 2006 - Journal of Symbolic Logic 71 (2):611 - 623.
    Let T be a positive L₁-L∞ contraction. We prove that the following statements are equivalent in constructive mathematics. (1) The projection in L₂ on the space of invariant functions exists: (2) The sequence (Tⁿ)n∈N Cesáro-converges in the L₂ norm: (3) The sequence (Tⁿ)n∈N Cesáro-converges almost everywhere. Thus, we find necessary and sufficient conditions for the Mean Ergodic Theorem and the Dunford-Schwartz Pointwise Ergodic Theorem. As a corollary we obtain a constructive ergodic theorem for ergodic measure-preserving transformations. This answers a question (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fundamental notions of analysis in subsystems of second-order arithmetic.Jeremy Avigad - 2006 - Annals of Pure and Applied Logic 139 (1):138-184.
    We develop fundamental aspects of the theory of metric, Hilbert, and Banach spaces in the context of subsystems of second-order arithmetic. In particular, we explore issues having to do with distances, closed subsets and subspaces, closures, bases, norms, and projections. We pay close attention to variations that arise when formalizing definitions and theorems, and study the relationships between them.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Gödel's Functional Interpretation.Jeremy Avigad & Solomon Feferman - 2000 - Bulletin of Symbolic Logic 6 (4):469-470.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Interpretation of analysis by means of constructive functionals of finite types.Georg Kreisel - 1959 - In A. Heyting (ed.), Constructivity in mathematics. Amsterdam,: North-Holland Pub. Co.. pp. 101--128.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • (1 other version)Godel's functional interpretation.Jeremy Avigad & Solomon Feferman - 1998 - In Samuel R. Buss (ed.), Handbook of proof theory. New York: Elsevier. pp. 337-405.
    Download  
     
    Export citation  
     
    Bookmark   31 citations