Switch to: References

Citations of:

Interpretation of analysis by means of constructive functionals of finite types

In A. Heyting (ed.), Constructivity in mathematics. Amsterdam,: North-Holland Pub. Co.. pp. 101--128 (1959)

Add citations

You must login to add citations.
  1. Functional interpretations of constructive set theory in all finite types.Justus Diller - 2008 - Dialectica 62 (2):149–177.
    Gödel's dialectica interpretation of Heyting arithmetic HA may be seen as expressing a lack of confidence in our understanding of unbounded quantification. Instead of formally proving an implication with an existential consequent or with a universal antecedent, the dialectica interpretation asks, under suitable conditions, for explicit 'interpreting' instances that make the implication valid. For proofs in constructive set theory CZF-, it may not always be possible to find just one such instance, but it must suffice to explicitly name a set (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computable and continuous partial homomorphisms on metric partial algebras.Viggo Stoltenberg-Hansen & John V. Tucker - 2003 - Bulletin of Symbolic Logic 9 (3):299-334.
    We analyse the connection between the computability and continuity of functions in the case of homomorphisms between topological algebraic structures. Inspired by the Pour-El and Richards equivalence theorem between computability and boundedness for closed linear operators on Banach spaces, we study the rather general situation of partial homomorphisms between metric partial universal algebras. First, we develop a set of basic notions and results that reveal some of the delicate algebraic, topological and effective properties of partial algebras. Our main computability concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Program Extraction from Normalization Proofs.Ulrich Berger, Stefan Berghofer, Pierre Letouzey & Helmut Schwichtenberg - 2006 - Studia Logica 82 (1):25-49.
    This paper describes formalizations of Tait's normalization proof for the simply typed λ-calculus in the proof assistants Minlog, Coq and Isabelle/HOL. From the formal proofs programs are machine-extracted that implement variants of the well-known normalization-by-evaluation algorithm. The case study is used to test and compare the program extraction machineries of the three proof assistants in a non-trivial setting.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A constructive analysis of learning in Peano Arithmetic.Federico Aschieri - 2012 - Annals of Pure and Applied Logic 163 (11):1448-1470.
    We give a constructive analysis of learning as it arises in various computational interpretations of classical Peano Arithmetic, such as Aschieri and Berardi learning based realizability, Avigad’s update procedures and epsilon substitution method. In particular, we show how to compute in Gödel’s system T upper bounds on the length of learning processes, which are themselves represented in T through learning based realizability. The result is achieved by the introduction of a new non standard model of Gödel’s T, whose new basic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Learning based realizability for HA + EM1 and 1-Backtracking games: Soundness and completeness.Federico Aschieri - 2013 - Annals of Pure and Applied Logic 164 (6):591-617.
    We prove a soundness and completeness result for Aschieri and Berardiʼs learning based realizability for Heyting Arithmetic plus Excluded Middle over semi-decidable statements with respect to 1-Backtracking Coquand game semantics. First, we prove that learning based realizability is sound with respect to 1-Backtracking Coquand game semantics. In particular, any realizer of an implication-and-negation-free arithmetical formula embodies a winning recursive strategy for the 1-Backtracking version of Tarski games. We also give examples of realizers and winning strategy extraction for some classical proofs. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Computation on abstract data types. The extensional approach, with an application to streams.Solomon Feferman - 1995 - Annals of Pure and Applied Logic 81 (1-3):75-113.
    In this paper we specialize the notion of abstract computational procedure previously introduced for intensionally presented structures to those which are extensionally given. This is provided by a form of generalized recursion theory which uses schemata for explicit definition, conditional definition and least fixed point recursion in functional of type level 2 over any appropriate structure. It is applied here to the case of potentially infinite streams as an abstract data type.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)On weak completeness of intuitionistic predicate logic.G. Kreisel - 1962 - Journal of Symbolic Logic 27 (2):139-158.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The characterization of Weihrauch reducibility in systems containing.Patrick Uftring - 2021 - Journal of Symbolic Logic 86 (1):224-261.
    We characterize Weihrauch reducibility in $ \operatorname {\mathrm {E-PA^{\omega }}} + \operatorname {\mathrm {QF-AC^{0,0}}}$ and all systems containing it by the provability in a linear variant of the same calculus using modifications of Gödel’s Dialectica interpretation that incorporate ideas from linear logic, nonstandard arithmetic, higher-order computability, and phase semantics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Total sets and objects in domain theory.Ulrich Berger - 1993 - Annals of Pure and Applied Logic 60 (2):91-117.
    Berger, U., Total sets and objects in domain theory, Annals of Pure and Applied Logic 60 91-117. Total sets and objects generalizing total functions are introduced into the theory of effective domains of Scott and Ersov. Using these notions Kreisel's Density Theorem and the Theorem of Kreisel-Lacombe-Shoenfield are generalized. As an immediate consequence we obtain the well-known continuity of computable functions on the constructive reals as well as a domain-theoretic characterization of the Heriditarily Effective Operations.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Intensional interpretations of functionals of finite type I.W. W. Tait - 1967 - Journal of Symbolic Logic 32 (2):198-212.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Computability over the Partial Continuous Functionals.Dag Normann - 2000 - Journal of Symbolic Logic 65 (3):1133-1142.
    We show that to every recursive total continuous functional $\Phi$ there is a PCF-definable representative $\Psi$ of $\Phi$ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An application of proof mining to nonlinear iterations.Laurenţiu Leuştean - 2014 - Annals of Pure and Applied Logic 165 (9):1484-1500.
    In this paper we apply methods of proof mining to obtain a highly uniform effective rate of asymptotic regularity for the Ishikawa iteration associated with nonexpansive self-mappings of convex subsets of a class of uniformly convex geodesic spaces. Moreover, we show that these results are guaranteed by a combination of logical metatheorems for classical and semi-intuitionistic systems.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strongly uniform bounds from semi-constructive proofs.Philipp Gerhardy & Ulrich Kohlenbach - 2006 - Annals of Pure and Applied Logic 141 (1):89-107.
    In [U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 89–128], the second author obtained metatheorems for the extraction of effective bounds from classical, prima facie non-constructive proofs in functional analysis. These metatheorems for the first time cover general classes of structures like arbitrary metric, hyperbolic, CAT and normed linear spaces and guarantee the independence of the bounds from parameters ranging over metrically bounded spaces. Recently ]), the authors obtained generalizations of these metatheorems which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An analysis of gödel's dialectica interpretation via linear logic.Paulo Oliva - 2008 - Dialectica 62 (2):269–290.
    This article presents an analysis of Gödel's dialectica interpretation via a refinement of intuitionistic logic known as linear logic. Linear logic comes naturally into the picture once one observes that the structural rule of contraction is the main cause of the lack of symmetry in Gödel's interpretation. We use the fact that the dialectica interpretation of intuitionistic logic can be viewed as a composition of Girard's embedding of intuitionistic logic into linear logic followed by de Paiva's dialectica interpretation of linear (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A logical presentation of the continuous functionals.Erik Palmgren & Viggo Stoltenberg-Hansen - 1997 - Journal of Symbolic Logic 62 (3):1021-1034.
    Download  
     
    Export citation  
     
    Bookmark  
  • Subrecursive hierarchies on Scott domains.Karl-Heinz Niggl - 1993 - Archive for Mathematical Logic 32 (4):239-257.
    We study a notion ofpartial primitive recursion (p.p.r.) including the concept ofparallelism in the context of partial continuous functions of type level one in the sense of [Krei], [Sco82], [Ers]. A variety of subrecursive hierarchies with respect top.p.r. is introduced and it turns out that they all coincide.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gödel's functional interpretation and its use in current mathematics.Ulrich Kohlenbach - 2008 - Dialectica 62 (2):223–267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On definition trees of ordinal recursive functonals: Reduction of the recursion orders by means of type level raising.Jan Terlouw - 1982 - Journal of Symbolic Logic 47 (2):395-402.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Classical truth in higher types.Ulrich Berger - 2008 - Mathematical Logic Quarterly 54 (3):240-246.
    We study, from a classical point of view, how the truth of a statement about higher type functionals depends on the underlying model. The models considered are the classical set-theoretic finite type hierarchy and the constructively more meaningful models of continuous functionals, hereditarily effective operations, as well as the closed term model of Gödel's system T. The main results are characterisations of prenex classes for which truth in the full set-theoretic model transfers to truth in the other models. As a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A survey of proof theory.G. Kreisel - 1968 - Journal of Symbolic Logic 33 (3):321-388.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • The metamathematics of ergodic theory.Jeremy Avigad - 2009 - Annals of Pure and Applied Logic 157 (2-3):64-76.
    The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theory provides rich opportunities for such analysis. Although the field has its origins in seventeenth century dynamics and nineteenth century statistical mechanics, it employs infinitary, nonconstructive, and structural methods that are characteristically modern. At the same time, computational concerns (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A most artistic package of a jumble of ideas.Fernando Ferreira - 2008 - Dialectica 62 (2):205–222.
    In the course of ten short sections, we comment on Gödel's seminal dialectica paper of fifty years ago and its aftermath. We start by suggesting that Gödel's use of functionals of finite type is yet another instance of the realistic attitude of Gödel towards mathematics, in tune with his defense of the postulation of ever increasing higher types in foundational studies. We also make some observations concerning Gödel's recasting of intuitionistic arithmetic via the dialectica interpretation, discuss the extra principles that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computing with functionals: Computability theory or computer science?Dag Normann - 2006 - Bulletin of Symbolic Logic 12 (1):43-59.
    We review some of the history of the computability theory of functionals of higher types, and we will demonstrate how contributions from logic and theoretical computer science have shaped this still active subject.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Typed lambda calculus.Henk P. Barendregt, Wil Dekkers & Richard Statman - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 1091--1132.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Reverse Mathematics and Uniformity in Proofs without Excluded Middle.Jeffry L. Hirst & Carl Mummert - 2011 - Notre Dame Journal of Formal Logic 52 (2):149-162.
    We show that when certain statements are provable in subsystems of constructive analysis using intuitionistic predicate calculus, related sequential statements are provable in weak classical subsystems. In particular, if a $\Pi^1_2$ sentence of a certain form is provable using E-HA ${}^\omega$ along with the axiom of choice and an independence of premise principle, the sequential form of the statement is provable in the classical system RCA. We obtain this and similar results using applications of modified realizability and the Dialectica interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Local stability of ergodic averages.Jeremy Avigad - unknown
    We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesgue measure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages Anf do not converge to a computable element of L2([0, 1]). In particular, there is no computable bound on the rate of convergence for that sequence. On the other hand, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • General type-structures of continuous and countable functionals.Dag Normann - 1983 - Mathematical Logic Quarterly 29 (4):177-192.
    Download  
     
    Export citation  
     
    Bookmark  
  • Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. [REVIEW]Andreas Weiermann - 1995 - Archive for Mathematical Logic 34 (5):313-330.
    Let T(Ω) be the ordinal notation system from Buchholz-Schütte (1988). [The order type of the countable segmentT(Ω)0 is — by Rathjen (1988) — the proof-theoretic ordinal the proof-theoretic ordinal ofACA 0 + (Π 1 l −TR).] In particular let ↦Ω a denote the enumeration function of the infinite cardinals and leta ↦ ψ0 a denote the partial collapsing operation on T(Ω) which maps ordinals of T(Ω) into the countable segment TΩ 0 of T(Ω). Assume that the (fast growing) extended Grzegorczyk (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On bounded functional interpretations.Gilda Ferreira & Paulo Oliva - 2012 - Annals of Pure and Applied Logic 163 (8):1030-1049.
    Download  
     
    Export citation  
     
    Bookmark  
  • Delimited control operators prove Double-negation Shift.Danko Ilik - 2012 - Annals of Pure and Applied Logic 163 (11):1549-1559.
    We propose an extension of minimal intuitionistic predicate logic, based on delimited control operators, that can derive the predicate-logic version of the double-negation shift schema, while preserving the disjunction and existence properties.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)On n-quantifier induction.Charles Parsons - 1972 - Journal of Symbolic Logic 37 (3):466-482.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Interpretations of Heyting's arithmetic—An analysis by means of a language with set symbols.Martin Stein - 1980 - Annals of Mathematical Logic 19 (1):1-31.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Injecting uniformities into Peano arithmetic.Fernando Ferreira - 2009 - Annals of Pure and Applied Logic 157 (2-3):122-129.
    We present a functional interpretation of Peano arithmetic that uses Gödel’s computable functionals and which systematically injects uniformities into the statements of finite-type arithmetic. As a consequence, some uniform boundedness principles are interpreted while maintaining unmoved the -sentences of arithmetic. We explain why this interpretation is tailored to yield conservation results.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A model theoretic characterization of effective operations.M. H. Löb - 1970 - Journal of Symbolic Logic 35 (2):217 - 222.
    Download  
     
    Export citation  
     
    Bookmark  
  • Principles of continuous choice and continuity of functions in formal systems for constructive mathematics.Michael J. Beeson - 1977 - Annals of Mathematical Logic 12 (3):249.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A small complete category.J. M. E. Hyland - 1988 - Annals of Pure and Applied Logic 40 (2):135-165.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Countable functionals and the projective hierarchy.Dag Normann - 1981 - Journal of Symbolic Logic 46 (2):209-215.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)A General Theorem on Existence Theorems.Martin Stein - 1981 - Mathematical Logic Quarterly 27 (25‐30):435-452.
    Download  
     
    Export citation  
     
    Bookmark  
  • Polymorphic extensions of simple type structures. With an application to a bar recursive minimization.Erik Barendsen & Marc Bezem - 1996 - Annals of Pure and Applied Logic 79 (3):221-280.
    The technical contribution of this paper is threefold.First we show how to encode functionals in a ‘flat’ applicative structure by adding oracles to untyped λ-calculus and mimicking the applicative behaviour of the functionals with an impredicatively defined reduction relation. The main achievement here is a Church-Rosser result for the extended reduction relation.Second, by combining the previous result with the model construction based on partial equivalence relations, we show how to extend a λ-closed simple type structure to a model of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From Bolzano‐Weierstraß to Arzelà‐Ascoli.Alexander P. Kreuzer - 2014 - Mathematical Logic Quarterly 60 (3):177-183.
    We show how one can obtain solutions to the Arzelà‐Ascoli theorem using suitable applications of the Bolzano‐Weierstraß principle. With this, we can apply the results from and obtain a classification of the strength of instances of the Arzelà‐Ascoli theorem and a variant of it. Let be the statement that each equicontinuous sequence of functions contains a subsequence that converges uniformly with the rate and let be the statement that each such sequence contains a subsequence which converges uniformly but possibly without (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A short note on Spector's proof of consistency of analysis.Fernando Ferreira - 2012 - In S. Barry Cooper (ed.), How the World Computes. pp. 222--227.
    Download  
     
    Export citation  
     
    Bookmark  
  • Uniform heyting arithmetic.Ulrich Berger - 2005 - Annals of Pure and Applied Logic 133 (1):125-148.
    We present an extension of Heyting arithmetic in finite types called Uniform Heyting Arithmetic that allows for the extraction of optimized programs from constructive and classical proofs. The system has two sorts of first-order quantifiers: ordinary quantifiers governed by the usual rules, and uniform quantifiers subject to stronger variable conditions expressing roughly that the quantified object is not computationally used in the proof. We combine a Kripke-style Friedman/Dragalin translation which is inspired by work of Coquand and Hofmann and a variant (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)A General Theorem on Existence Theorems.Martin Stein - 1981 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 27 (25-30):435-452.
    Download  
     
    Export citation  
     
    Bookmark  
  • Effective results on a fixed point algorithm for families of nonlinear mappings.Andrei Sipoş - 2017 - Annals of Pure and Applied Logic 168 (1):112-128.
    Download  
     
    Export citation  
     
    Bookmark   1 citation