Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Husserl and Frege.Peter M. Simons - 1982 - Zeitschrift für Philosophische Forschung 40 (2):300-302.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Number Sense: How the Mind Creates Mathematics.Stanislas Dehaene - 1999 - British Journal of Educational Studies 47 (2):201-203.
    Download  
     
    Export citation  
     
    Bookmark   245 citations  
  • The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Second Philosophy: A Naturalistic Method.Penelope Maddy - 2007 - Oxford, England and New York, NY, USA: Oxford University Press.
    Many philosophers claim to be naturalists, but there is no common understanding of what naturalism is. Maddy proposes an austere form of naturalism called 'Second Philosophy', using the persona of an idealized inquirer, and she puts this method into practice in illuminating reflections on logical truth, philosophy of mathematics, and metaphysics.
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • (2 other versions)Translations from the philosophical writings of Gottlob Frege.Gottlob Frege - 1960 - Oxford, England: Blackwell. Edited by P. T. Geach & Max Black.
    Download  
     
    Export citation  
     
    Bookmark   272 citations  
  • (1 other version)Core knowledge.Elizabeth S. Spelke - 2000 - American Psychologist 55 (11):1233-1243.
    Complex cognitive skills such as reading and calculation and complex cognitive achievements such as formal science and mathematics may depend on a set of building block systems that emerge early in human ontogeny and phylogeny. These core knowledge systems show characteristic limits of domain and task specificity: Each serves to represent a particular class of entities for a particular set of purposes. By combining representations from these systems, however human cognition may achieve extraordinary flexibility. Studies of cognition in human infants (...)
    Download  
     
    Export citation  
     
    Bookmark   213 citations  
  • Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl.Gottlob Frege - 1884 - Wittgenstein-Studien 3 (2):993-999.
    Download  
     
    Export citation  
     
    Bookmark   317 citations  
  • Nathaniel Miller. Euclid and his twentieth century rivals: Diagrams in the logic of euclidean geometry. Csli studies in the theory and applications of diagrams.John Mumma - 2008 - Philosophia Mathematica 16 (2):256-264.
    It is commonplace to view the rigor of the mathematics in Euclid's Elements in the way an experienced teacher views the work of an earnest beginner: respectable relative to an early stage of development, but ultimately flawed. Given the close connection in content between Euclid's Elements and high-school geometry classes, this is understandable. Euclid, it seems, never realized what everyone who moves beyond elementary geometry into more advanced mathematics is now customarily taught: a fully rigorous proof cannot rely on geometric (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Husserl and Frege.J. N. MOHANTY - 1982 - Tijdschrift Voor Filosofie 46 (4):693-693.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Philosophie der Arithmetik.E. G. Husserl - 1891 - The Monist 2:627.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Philosophie der Arithmetik.E. S. Husserl - 1892 - Philosophical Review 1 (3):327-330.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Euclid and His Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry.Nathaniel Miller - 2007 - Center for the Study of Language and Inf.
    Twentieth-century developments in logic and mathematics have led many people to view Euclid’s proofs as inherently informal, especially due to the use of diagrams in proofs. In _Euclid and His Twentieth-Century Rivals_, Nathaniel Miller discusses the history of diagrams in Euclidean Geometry, develops a formal system for working with them, and concludes that they can indeed be used rigorously. Miller also introduces a diagrammatic computer proof system, based on this formal system. This volume will be of interest to mathematicians, computer (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Wilhelm Maximilian wundt.Alan Kim - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Seeing and Visualizing: It's Not What You Think.Zenon W. Pylyshyn - 2003 - Bradford.
    How we see and how we visualize: why the scientific account differs from our experience.
    Download  
     
    Export citation  
     
    Bookmark   194 citations  
  • (1 other version)Core knowledge.Elizabeth S. Spelke & Katherine D. Kinzler - 2007 - Developmental Science 10 (1):89-96.
    Download  
     
    Export citation  
     
    Bookmark   148 citations  
  • (3 other versions)Grundriss der Psychologie.J. E. C. & Wilhelm Wundt - 1896 - Philosophical Review 5 (3):331.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)Grundlagen der Arithmetik: Studienausgabe mit dem Text der Centenarausgabe.Gottlob Frege - 1988 - Meiner, F.
    Die Grundlagen gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen. Studienausgabe aufgrund der textkritisch herausgegebenen Jubiläumsausgabe (Centenarausgabe). Mit Einleitung, Anmerkungen, Literaturverzeichnis und Namenregister.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • (3 other versions)Grundriss der Psychologie.Wilhelm Wundt - 1895 - The Monist 6:632.
    Download  
     
    Export citation  
     
    Bookmark   3 citations