Switch to: References

Citations of:

The Euclidean Diagram

In Paolo Mancosu, The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133 (2008)

Add citations

You must login to add citations.
  1. Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Kant on geometry and spatial intuition.Michael Friedman - 2012 - Synthese 186 (1):231-255.
    I use recent work on Kant and diagrammatic reasoning to develop a reconsideration of central aspects of Kant’s philosophy of geometry and its relation to spatial intuition. In particular, I reconsider in this light the relations between geometrical concepts and their schemata, and the relationship between pure and empirical intuition. I argue that diagrammatic interpretations of Kant’s theory of geometrical intuition can, at best, capture only part of what Kant’s conception involves and that, for example, they cannot explain why Kant (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Perceiving Necessity.Catherine Legg & James Franklin - 2017 - Pacific Philosophical Quarterly 98 (3):320-343.
    In many diagrams one seems to perceive necessity – one sees not only that something is so, but that it must be so. That conflicts with a certain empiricism largely taken for granted in contemporary philosophy, which believes perception is not capable of such feats. The reason for this belief is often thought well-summarized in Hume's maxim: ‘there are no necessary connections between distinct existences’. It is also thought that even if there were such necessities, perception is too passive or (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • An Inquiry into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2014 - In Giorgio Venturi, Marco Panza & Gabriele Lolli, From Logic to Practice: Italian Studies in the Philosophy of Mathematics. Cham: Springer International Publishing. pp. 315-336.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)When and Why Understanding Needs Phantasmata: A Moderate Interpretation of Aristotle’s De Memoria and De Anima on the Role of Images in Intellectual Activities.Caleb Cohoe - 2016 - Phronesis: A Journal for Ancient Philosophy 61 (3):337-372.
    I examine the passages where Aristotle maintains that intellectual activity employs φαντάσματα (images) and argue that he requires awareness of the relevant images. This, together with Aristotle’s claims about the universality of understanding, gives us reason to reject the interpretation of Michael Wedin and Victor Caston, on which φαντάσματα serve as the material basis for thinking. I develop a new interpretation by unpacking the comparison Aristotle makes to the role of diagrams in doing geometry. In theoretical understanding of mathematical and (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Epistemic Dependence and Understanding: Reformulating through Symmetry.Josh Hunt - 2023 - British Journal for the Philosophy of Science 74 (4):941-974.
    Science frequently gives us multiple, compatible ways of solving the same problem or formulating the same theory. These compatible formulations change our understanding of the world, despite providing the same explanations. According to what I call "conceptualism," reformulations change our understanding by clarifying the epistemic structure of theories. I illustrate conceptualism by analyzing a typical example of symmetry-based reformulation in chemical physics. This case study poses a problem for "explanationism," the rival thesis that differences in understanding require ontic explanatory differences. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Exploring the fruitfulness of diagrams in mathematics.Jessica Carter - 2019 - Synthese 196 (10):4011-4032.
    The paper asks whether diagrams in mathematics are particularly fruitful compared to other types of representations. In order to respond to this question a number of examples of propositions and their proofs are considered. In addition I use part of Peirce’s semiotics to characterise different types of signs used in mathematical reasoning, distinguishing between symbolic expressions and 2-dimensional diagrams. As a starting point I examine a proposal by Macbeth. Macbeth explains how it can be that objects “pop up”, e.g., as (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • And so on... : reasoning with infinite diagrams.Solomon Feferman - 2012 - Synthese 186 (1):371-386.
    This paper presents examples of infinite diagrams whose use is more or less essential for understanding and accepting various proofs in higher mathematics. The significance of these is discussed with respect to the thesis that every proof can be formalized, and a “pre” form of this thesis that every proof can be presented in everyday statements-only form.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Three Roles of Empirical Information in Philosophy: Intuitions on Mathematics do Not Come for Free.Deniz Sarikaya, José Antonio Pérez-Escobar & Deborah Kant - 2021 - Kriterion – Journal of Philosophy 35 (3):247-278.
    This work gives a new argument for ‘Empirical Philosophy of Mathematical Practice’. It analyses different modalities on how empirical information can influence philosophical endeavours. We evoke the classical dichotomy between “armchair” philosophy and empirical/experimental philosophy, and claim that the latter should in turn be subdivided in three distinct styles: Apostate speculator, Informed analyst, and Freeway explorer. This is a shift of focus from the source of the information towards its use by philosophers. We present several examples from philosophy of mind/science (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • That We See That Some Diagrammatic Proofs Are Perfectly Rigorous.Jody Azzouni - 2013 - Philosophia Mathematica 21 (3):323-338.
    Mistaken reasons for thinking diagrammatic proofs aren't rigorous are explored. The main result is that a confusion between the contents of a proof procedure (what's expressed by the referential elements in a proof procedure) and the unarticulated mathematical aspects of a proof procedure (how that proof procedure is enabled) gives the impression that diagrammatic proofs are less rigorous than language proofs. An additional (and independent) factor is treating the impossibility of naturally generalizing a diagrammatic proof procedure as an indication of (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2019 - Synthese 196 (7):2715-2736.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Towards a theory of mathematical argument.Ian J. Dove - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 291--308.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Diagrams and proofs in analysis.Jessica Carter - 2010 - International Studies in the Philosophy of Science 24 (1):1 – 14.
    This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On the development of geometric cognition: Beyond nature vs. nurture.Markus Pantsar - 2022 - Philosophical Psychology 35 (4):595-616.
    How is knowledge of geometry developed and acquired? This central question in the philosophy of mathematics has received very different answers. Spelke and colleagues argue for a “core cognitivist”, nativist, view according to which geometric cognition is in an important way shaped by genetically determined abilities for shape recognition and orientation. Against the nativist position, Ferreirós and García-Pérez have argued for a “culturalist” account that takes geometric cognition to be fundamentally a culturally developed phenomenon. In this paper, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Counterexample Search in Diagram‐Based Geometric Reasoning.Yacin Hamami, John Mumma & Marie Amalric - 2021 - Cognitive Science 45 (4):e12959.
    Topological relations such as inside, outside, or intersection are ubiquitous to our spatial thinking. Here, we examined how people reason deductively with topological relations between points, lines, and circles in geometric diagrams. We hypothesized in particular that a counterexample search generally underlies this type of reasoning. We first verified that educated adults without specific math training were able to produce correct diagrammatic representations contained in the premisses of an inference. Our first experiment then revealed that subjects who correctly judged an (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Cognitive Artifacts for Geometric Reasoning.Mateusz Hohol & Marcin Miłkowski - 2019 - Foundations of Science 24 (4):657-680.
    In this paper, we focus on the development of geometric cognition. We argue that to understand how geometric cognition has been constituted, one must appreciate not only individual cognitive factors, such as phylogenetically ancient and ontogenetically early core cognitive systems, but also the social history of the spread and use of cognitive artifacts. In particular, we show that the development of Greek mathematics, enshrined in Euclid’s Elements, was driven by the use of two tightly intertwined cognitive artifacts: the use of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Contemporary Practice of Philosophy of Mathematics.Colin Jakob Rittberg - 2019 - Acta Baltica Historiae Et Philosophiae Scientiarum 7 (1):5-26.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematical Generality, Letter-Labels, and All That.F. Acerbi - 2020 - Phronesis 65 (1):27-75.
    This article focusses on the generality of the entities involved in a geometric proof of the kind found in ancient Greek treatises: it shows that the standard modern translation of Greek mathematical propositions falsifies crucial syntactical elements, and employs an incorrect conception of the denotative letters in a Greek geometric proof; epigraphic evidence is adduced to show that these denotative letters are ‘letter-labels’. On this basis, the article explores the consequences of seeing that a Greek mathematical proposition is fully general, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematicians writing for mathematicians.Line Edslev Andersen, Mikkel Willum Johansen & Henrik Kragh Sørensen - 2019 - Synthese 198 (Suppl 26):6233-6250.
    We present a case study of how mathematicians write for mathematicians. We have conducted interviews with two research mathematicians, the talented PhD student Adam and his experienced supervisor Thomas, about a research paper they wrote together. Over the course of 2 years, Adam and Thomas revised Adam’s very detailed first draft. At the beginning of this collaboration, Adam was very knowledgeable about the subject of the paper and had good presentational skills but, as a new PhD student, did not yet (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Epistemological Relevance of Social Power and Justice in Mathematics.Eugenie Hunsicker & Colin Jakob Rittberg - 2022 - Axiomathes 32 (3):1147-1168.
    In this paper we argue that questions about which mathematical ideas mathematicians are exposed to and choose to pay attention to are epistemologically relevant and entangled with power dynamics and social justice concerns. There is a considerable body of literature that discusses the dissemination and uptake of ideas as social justice issues. We argue that these insights are also relevant for the epistemology of mathematics. We make this visible by a journalistic exploration of relevant cases and embed our insights into (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Relationship of Derivations in Artificial Languages to Ordinary Rigorous Mathematical Proof.J. Azzouni - 2013 - Philosophia Mathematica 21 (2):247-254.
    The relationship is explored between formal derivations, which occur in artificial languages, and mathematical proof, which occurs in natural languages. The suggestion that ordinary mathematical proofs are abbreviations or sketches of formal derivations is presumed false. The alternative suggestion that the existence of appropriate derivations in formal logical languages is a norm for ordinary rigorous mathematical proof is explored and rejected.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • “Things Unreasonably Compulsory”: A Peircean Challenge to a Humean Theory of Perception, Particularly With Respect to Perceiving Necessary Truths.Catherine Legg - 2014 - Cognitio 15 (1):89-112.
    Much mainstream analytic epistemology is built around a sceptical treatment of modality which descends from Hume. The roots of this scepticism are argued to lie in Hume’s (nominalist) theory of perception, which is excavated, studied and compared with the very different (realist) theory of perception developed by Peirce. It is argued that Peirce’s theory not only enables a considerably more nuanced and effective epistemology, it also (unlike Hume’s theory) does justice to what happens when we appreciate a proof in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematics as the art of abstraction.Richard L. Epstein - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 257--289.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Euclid’s Common Notions and the Theory of Equivalence.Vincenzo De Risi - 2020 - Foundations of Science 26 (2):301-324.
    The “common notions” prefacing the Elements of Euclid are a very peculiar set of axioms, and their authenticity, as well as their actual role in the demonstrations, have been object of debate. In the first part of this essay, I offer a survey of the evidence for the authenticity of the common notions, and conclude that only three of them are likely to have been in place at the times of Euclid, whereas others were added in Late Antiquity. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Why ‘scaffolding’ is the wrong metaphor: the cognitive usefulness of mathematical representations.Brendan Larvor - 2020 - Synthese 197 (9):3743-3756.
    The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least (and plausibly for others), scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Analogical arguments in mathematics.Paul Bartha - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 199--237.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Epistemological Subject(s) of Mathematics.Silvia De Toffoli - 2024 - In Bharath Sriraman, Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2880-2904.
    Paying attention to the inner workings of mathematicians has led to a proliferation of new themes in the philosophy of mathematics. Several of these have to do with epistemology. Philosophers of mathematical practice, however, have not (yet) systematically engaged with general (analytic) epistemology. To be sure, there are some exceptions, but they are few and far between. In this chapter, I offer an explanation of why this might be the case and show how the situation could be remedied. I contend (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Epistemic Roles of Diagrams.Silvia De Toffoli - forthcoming - In Kurt Sylvan, Ernest Sosa, Jonathan Dancy & Matthias Steup, The Blackwell Companion to Epistemology, 3rd edition. Wiley Blackwell.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege’s philosophy of geometry.Matthias Schirn - 2019 - Synthese 196 (3):929-971.
    In this paper, I critically discuss Frege’s philosophy of geometry with special emphasis on his position in The Foundations of Arithmetic of 1884. In Sect. 2, I argue that that what Frege calls faculty of intuition in his dissertation is probably meant to refer to a capacity of visualizing geometrical configurations structurally in a way which is essentially the same for most Western educated human beings. I further suggest that according to his Habilitationsschrift it is through spatial intuition that we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Diagrams in mathematics: history and philosophy.John Mumma & Marco Panza - 2012 - Synthese 186 (1):1-5.
    Diagrams are ubiquitous in mathematics. From the most elementary class to the most advanced seminar, in both introductory textbooks and professional journals, diagrams are present, to introduce concepts, increase understanding, and prove results. They thus fulfill a variety of important roles in mathematical practice. Long overlooked by philosophers focused on foundational and ontological issues, these roles have come to receive attention in the past two decades, a trend in line with the growing philosophical interest in actual mathematical practice.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Imagination in mathematics.Andrew Arana - 2016 - In Amy Kind, The Routledge Handbook of the Philosophy of Imagination. New York: Routledge. pp. 463-477.
    This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructive geometrical reasoning and diagrams.John Mumma - 2012 - Synthese 186 (1):103-119.
    Modern formal accounts of the constructive nature of elementary geometry do not aim to capture the intuitive or concrete character of geometrical construction. In line with the general abstract approach of modern axiomatics, nothing is presumed of the objects that a geometric construction produces. This study explores the possibility of a formal account of geometric construction where the basic geometric objects are understood from the outset to possess certain spatial properties. The discussion is centered around Eu , a recently developed (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Why ‘scaffolding’ is the wrong metaphor: the cognitive usefulness of mathematical representations.Brendan Larvor - 2018 - Synthese:1-14.
    The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least, scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the right track with his (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Not Saying What We Shouldn't Have to Say.Shay Logan & Leach-Krouse Graham - 2021 - Australasian Journal of Logic 18 (5):524-568.
    In this paper we introduce a novel way of building arithmetics whose background logic is R. The purpose of doing this is to point in the direction of a novel family of systems that could be candidates for being the infamous R#1/2 that Meyer suggested we look for.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Philosophy of Mathematical Practice Can Teach Argumentation Theory About Diagrams and Pictures.Brendan Larvor - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 239--253.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Prolegomena to a cognitive investigation of Euclidean diagrammatic reasoning.Yacin Hamami & John Mumma - 2013 - Journal of Logic, Language and Information 22 (4):421-448.
    Euclidean diagrammatic reasoning refers to the diagrammatic inferential practice that originated in the geometrical proofs of Euclid’s Elements. A seminal philosophical analysis of this practice by Manders (‘The Euclidean diagram’, 2008) has revealed that a systematic method of reasoning underlies the use of diagrams in Euclid’s proofs, leading in turn to a logical analysis aiming to capture this method formally via proof systems. The central premise of this paper is that our understanding of Euclidean diagrammatic reasoning can be fruitfully advanced (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The law of refraction and Kepler’s heuristics.Carlos Alberto Cardona Suárez & Juliana Gutiérrez Valderrama - 2020 - Archive for History of Exact Sciences 74 (1):45-75.
    Johannes Kepler dedicated much of his work to discover a law for the refraction of light. Unfortunately, he formulated an incorrect law. Nevertheless, it was useful for anticipating the behavior of light in some specific conditions. Some believe that Kepler did not have the elements to formulate the law that was later accepted by the scientific community, that is, the Snell–Descartes law. However, in this paper, we propose a model that agrees with Kepler’s heuristics and that is also successful in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Human diagrammatic reasoning and seeing-as.Annalisa Coliva - 2012 - Synthese 186 (1):121-148.
    The paper addresses the issue of human diagrammatic reasoning in the context of Euclidean geometry. It develops several philosophical categories which are useful for a description and an analysis of our experience while reasoning with diagrams. In particular, it draws the attention to the role of seeing-as; it analyzes its implications for proofs in Euclidean geometry and ventures the hypothesis that geometrical judgments are analytic and a priori, after all.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The mathematical form of measurement and the argument for Proposition I in Newton’s Principia.Katherine Dunlop - 2012 - Synthese 186 (1):191-229.
    Newton characterizes the reasoning of Principia Mathematica as geometrical. He emulates classical geometry by displaying, in diagrams, the objects of his reasoning and comparisons between them. Examination of Newton’s unpublished texts shows that Newton conceives geometry as the science of measurement. On this view, all measurement ultimately involves the literal juxtaposition—the putting-together in space—of the item to be measured with a measure, whose dimensions serve as the standard of reference, so that all quantity is ultimately related to spatial extension. I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Understanding, formal verification, and the philosophy of mathematics.Jeremy Avigad - 2010 - Journal of the Indian Council of Philosophical Research 27:161-197.
    The philosophy of mathematics has long been concerned with deter- mining the means that are appropriate for justifying claims of mathemat- ical knowledge, and the metaphysical considerations that render them so. But, as of late, many philosophers have called attention to the fact that a much broader range of normative judgments arise in ordinary math- ematical practice; for example, questions can be interesting, theorems important, proofs explanatory, concepts powerful, and so on. The as- sociated values are often loosely classied as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations