Switch to: Citations

Add references

You must login to add references.
  1. Risk, Uncertainty and Profit.Frank H. Knight - 1921 - University of Chicago Press.
    Role of the entrepreneur in a distinct role of profit.
    Download  
     
    Export citation  
     
    Bookmark   302 citations  
  • Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • (1 other version)On the Einstein Podolsky Rosen paradox.J. S. Bell - 2004 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 14--21.
    Download  
     
    Export citation  
     
    Bookmark   611 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   402 citations  
  • (1 other version)”Relative state’ formulation of quantum mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454--462.
    Download  
     
    Export citation  
     
    Bookmark   300 citations  
  • A philosopher's understanding of quantum mechanics: possibilities and impossibilities of a modal interpretation.Pieter E. Vermaas - 1999 - New York: Cambridge University Press.
    This book is about how to understand quantum mechanics by means of a modal interpretation. Modal interpretations provide a general framework within which quantum mechanics can be considered as a theory that describes reality in terms of physical systems possessing definite properties. Quantum mechanics is standardly understood to be a theory about probabilities with which measurements have outcomes. Modal interpretations are relatively new attempts to present quantum mechanics as a theory which, like other physical theories, describes an observer-independent reality. In (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The modal interpretation of quantum mechanics and its generalization to density operators.Pieter E. Vermaas & Dennis Dieks - 1995 - Foundations of Physics 25 (1):145-158.
    We generalize the modal interpretation of quantum mechanics so that it may be applied to composite systems represented by arbitrary density operators. We discuss the interpretation these density operators receive and relate this to the discussion about the interpretation of proper and improper mixtures in the standard interpretation.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The Principles of Quantum Mechanics.P. A. M. Dirac - 1936 - Revue de Métaphysique et de Morale 43 (2):5-5.
    Download  
     
    Export citation  
     
    Bookmark   274 citations  
  • Dynamics for Modal Interpretations.Guido Bacciagaluppi & Michael Dickson - 1999 - Foundations of Physics 29 (8):1165-1201.
    An outstanding problem in so-called modal interpretations of quantum mechanics has been the specification of a dynamics for the properties introduced in such interpretations. We develop a general framework (in the context of the theory of stochastic processes) for specifying a dynamics for interpretations in this class, focusing on the modal interpretation by Vermaas and Dieks. This framework admits many empirically equivalent dynamics. We give some examples, and discuss some of the properties of one of them. This approach is applicable (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Modal interpretations and relativity.Wayne C. Myrvold - 2002 - Foundations of Physics 32 (11):1773-1784.
    A proof is given, at a greater level of generality than previous 'no-go' theorems, of the impossibility of formulating a modal interpretation that exhibits 'serious' Lorentz invariance at the fundamental level. Particular attention is given to modal interpretations of the type proposed by Bub.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Two paradoxes in quantum mechanics.H. P. Krips - 1969 - Philosophy of Science 36 (2):145-152.
    The purpose of this paper is to resolve two paradoxes, which occur in quantum theory, by using the discussion of the theory of measurement presented in two earlier papers by the author [3], [4], [5]. The two paradoxes discussed will be the Schrödinger cat paradox and the Einstein, Podolski, Rosen paradox [2]. An introductory section will be included which summarizes the relevant results from the author's previous papers. Also a discussion will be made regarding the author's interpretation of the density (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lorentz-invariance in modal interpretations.with Michael Dickson - 2004 - In Jeremy Butterfield & Hans Halvorson (eds.), Quantum Entanglements: Selected Papers. New York: Clarendon Press.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Solving the measurement problem: De broglie-Bohm loses out to Everett. [REVIEW]Harvey R. Brown & David Wallace - 2004 - Foundations of Physics 35 (4):517-540.
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • (1 other version)Review of Pieter E. Vermaas: A philosopher's understanding of quantum mechanics: possibilities and impossibilities of a modal interpretation[REVIEW]Pieter Vermaas & Hans Halvorson - 2001 - British Journal for the Philosophy of Science 52 (2):387-391.
    Download  
     
    Export citation  
     
    Bookmark   5 citations