Switch to: Citations

Add references

You must login to add references.
  1. Universal computably enumerable equivalence relations.Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Luca San Mauro & Andrea Sorbi - 2014 - Journal of Symbolic Logic 79 (1):60-88.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On the Degree Structure of Equivalence Relations Under Computable Reducibility.Keng Meng Ng & Hongyuan Yu - 2019 - Notre Dame Journal of Formal Logic 60 (4):733-761.
    We study the degree structure of the ω-c.e., n-c.e., and Π10 equivalence relations under the computable many-one reducibility. In particular, we investigate for each of these classes of degrees the most basic questions about the structure of the partial order. We prove the existence of the greatest element for the ω-c.e. and n-computably enumerable equivalence relations. We provide computable enumerations of the degrees of ω-c.e., n-c.e., and Π10 equivalence relations. We prove that for all the degree classes considered, upward density (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Linear orders realized by C.e. Equivalence relations.Ekaterina Fokina, Bakhadyr Khoussainov, Pavel Semukhin & Daniel Turetsky - 2016 - Journal of Symbolic Logic 81 (2):463-482.
    LetEbe a computably enumerable equivalence relation on the setωof natural numbers. We say that the quotient set$\omega /E$realizesa linearly ordered set${\cal L}$if there exists a c.e. relation ⊴ respectingEsuch that the induced structure is isomorphic to${\cal L}$. Thus, one can consider the class of all linearly ordered sets that are realized by$\omega /E$; formally,${\cal K}\left = \left\{ {{\cal L}\,|\,{\rm{the}}\,{\rm{order}}\, - \,{\rm{type}}\,{\cal L}\,{\rm{is}}\,{\rm{realized}}\,{\rm{by}}\,E} \right\}$. In this paper we study the relationship between computability-theoretic properties ofEand algebraic properties of linearly ordered sets realized (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Computable structures and the hyperarithmetical hierarchy.C. J. Ash - 2000 - New York: Elsevier. Edited by J. Knight.
    This book describes a program of research in computable structure theory. The goal is to find definability conditions corresponding to bounds on complexity which persist under isomorphism. The results apply to familiar kinds of structures (groups, fields, vector spaces, linear orderings Boolean algebras, Abelian p-groups, models of arithmetic). There are many interesting results already, but there are also many natural questions still to be answered. The book is self-contained in that it includes necessary background material from recursion theory (ordinal notations, (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • A borel reducibility theory for classes of countable structures.Harvey Friedman & Lee Stanley - 1989 - Journal of Symbolic Logic 54 (3):894-914.
    We introduce a reducibility preordering between classes of countable structures, each class containing only structures of a given similarity type (which is allowed to vary from class to class). Though we sometimes work in a slightly larger context, we are principally concerned with the case where each class is an invariant Borel class (i.e. the class of all models, with underlying set $= \omega$, of an $L_{\omega_1\omega}$ sentence; from this point of view, the reducibility can be thought of as a (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Isomorphism relations on computable structures.Ekaterina B. Fokina, Sy-David Friedman, Valentina Harizanov, Julia F. Knight, Charles Mccoy & Antonio Montalbán - 2012 - Journal of Symbolic Logic 77 (1):122-132.
    We study the complexity of the isomorphism relation on classes of computable structures. We use the notion of FF-reducibility introduced in [9] to show completeness of the isomorphism relation on many familiar classes in the context of all ${\mathrm{\Sigma }}_{1}^{1}$ equivalence relations on hyperarithmetical subsets of ω.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Graphs realised by r.e. equivalence relations.Alexander Gavruskin, Sanjay Jain, Bakhadyr Khoussainov & Frank Stephan - 2014 - Annals of Pure and Applied Logic 165 (7-8):1263-1290.
    We investigate dependence of recursively enumerable graphs on the equality relation given by a specific r.e. equivalence relation on ω. In particular we compare r.e. equivalence relations in terms of graphs they permit to represent. This defines partially ordered sets that depend on classes of graphs under consideration. We investigate some algebraic properties of these partially ordered sets. For instance, we show that some of these partial ordered sets possess atoms, minimal and maximal elements. We also fully describe the isomorphism (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Classifying positive equivalence relations.Claudio Bernardi & Andrea Sorbi - 1983 - Journal of Symbolic Logic 48 (3):529-538.
    Given two (positive) equivalence relations ∼ 1 , ∼ 2 on the set ω of natural numbers, we say that ∼ 1 is m-reducible to ∼ 2 if there exists a total recursive function h such that for every x, y ∈ ω, we have $x \sim_1 y \operatorname{iff} hx \sim_2 hy$ . We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a "uniformity property" holds). This (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Universal recursion theoretic properties of R.e. Preordered structures.Franco Montagna & Andrea Sorbi - 1985 - Journal of Symbolic Logic 50 (2):397-406.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Computably enumerable equivalence relations.Su Gao & Peter Gerdes - 2001 - Studia Logica 67 (1):27-59.
    We study computably enumerable equivalence relations (ceers) on N and unravel a rich structural theory for a strong notion of reducibility among ceers.
    Download  
     
    Export citation  
     
    Bookmark   20 citations