Switch to: Citations

Add references

You must login to add references.
  1. Degrees of categoricity and spectral dimension.Nikolay A. Bazhenov, Iskander Sh Kalimullin & Mars M. Yamaleev - 2018 - Journal of Symbolic Logic 83 (1):103-116.
    A Turing degreedis the degree of categoricity of a computable structure${\cal S}$ifdis the least degree capable of computing isomorphisms among arbitrary computable copies of${\cal S}$. A degreedis the strong degree of categoricity of${\cal S}$ifdis the degree of categoricity of${\cal S}$, and there are computable copies${\cal A}$and${\cal B}$of${\cal S}$such that every isomorphism from${\cal A}$onto${\cal B}$computesd. In this paper, we build a c.e. degreedand a computable rigid structure${\cal M}$such thatdis the degree of categoricity of${\cal M}$, butdis not the strong degree of categoricity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Effective categoricity of equivalence structures.Wesley Calvert, Douglas Cenzer, Valentina Harizanov & Andrei Morozov - 2006 - Annals of Pure and Applied Logic 141 (1):61-78.
    We investigate effective categoricity of computable equivalence structures . We show that is computably categorical if and only if has only finitely many finite equivalence classes, or has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. Since all computable equivalence structures are relatively categorical, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Degrees of Categoricity and the Hyperarithmetic Hierarchy.Barbara F. Csima, Johanna N. Y. Franklin & Richard A. Shore - 2013 - Notre Dame Journal of Formal Logic 54 (2):215-231.
    We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of E. Fokina, I. Kalimullin, and R. Miller to show that for every computable ordinal $\alpha$, $\mathbf{0}^{}$ is the degree of categoricity of some computable structure $\mathcal{A}$. We show additionally that for $\alpha$ a computable successor ordinal, every degree $2$-c.e. in and above $\mathbf{0}^{}$ is a degree of categoricity. We further prove that every degree of categoricity is hyperarithmetic and show that the index set of structures with degrees (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Bi‐embeddability spectra and bases of spectra.Ekaterina Fokina, Dino Rossegger & Luca San Mauro - 2019 - Mathematical Logic Quarterly 65 (2):228-236.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categoricity Spectra for Rigid Structures.Ekaterina Fokina, Andrey Frolov & Iskander Kalimullin - 2016 - Notre Dame Journal of Formal Logic 57 (1):45-57.
    For a computable structure $\mathcal {M}$, the categoricity spectrum is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable copies of $\mathcal {M}$. If the spectrum has a least degree, this degree is called the degree of categoricity of $\mathcal {M}$. In this paper we investigate spectra of categoricity for computable rigid structures. In particular, we give examples of rigid structures without degrees of categoricity.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Up to Equimorphism, Hyperarithmetic Is Recursive.Antonio Montalbán - 2005 - Journal of Symbolic Logic 70 (2):360 - 378.
    Two linear orderings are equimorphic if each can be embedded into the other. We prove that every hyperarithmetic linear ordering is equimorphic to a recursive one. On the way to our main result we prove that a linear ordering has Hausdorff rank less than $\omega _{1}^{\mathit{CK}}$ if and only if it is equimorphic to a recursive one. As a corollary of our proof we prove that, given a recursive ordinal α, the partial ordering of equimorphism types of linear orderings of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the equimorphism types of linear orderings.Antonio Montalbán - 2007 - Bulletin of Symbolic Logic 13 (1):71-99.
    §1. Introduction. A linear ordering embedsinto another linear ordering if it is isomorphic to a subset of it. Two linear orderings are said to beequimorphicif they can be embedded in each other. This is an equivalence relation, and we call the equivalence classesequimorphism types. We analyze the structure of equimorphism types of linear orderings, which is partially ordered by the embeddability relation. Our analysis is mainly fromthe viewpoints of Computability Theory and Reverse Mathematics. But we also obtain results, as the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Finite computable dimension and degrees of categoricity.Barbara F. Csima & Jonathan Stephenson - 2019 - Annals of Pure and Applied Logic 170 (1):58-94.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Degrees of categoricity of computable structures.Ekaterina B. Fokina, Iskander Kalimullin & Russell Miller - 2010 - Archive for Mathematical Logic 49 (1):51-67.
    Defining the degree of categoricity of a computable structure ${\mathcal{M}}$ to be the least degree d for which ${\mathcal{M}}$ is d-computably categorical, we investigate which Turing degrees can be realized as degrees of categoricity. We show that for all n, degrees d.c.e. in and above 0 (n) can be so realized, as can the degree 0 (ω).
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On Δ 2 0 -categoricity of equivalence relations.Rod Downey, Alexander G. Melnikov & Keng Meng Ng - 2015 - Annals of Pure and Applied Logic 166 (9):851-880.
    Download  
     
    Export citation  
     
    Bookmark   4 citations