Switch to: Citations

Add references

You must login to add references.
  1. First-order Gödel logics.Richard Zach, Matthias Baaz & Norbert Preining - 2007 - Annals of Pure and Applied Logic 147 (1):23-47.
    First-order Gödel logics are a family of finite- or infinite-valued logics where the sets of truth values V are closed subsets of [0,1] containing both 0 and 1. Different such sets V in general determine different Gödel logics GV (sets of those formulas which evaluate to 1 in every interpretation into V). It is shown that GV is axiomatizable iff V is finite, V is uncountable with 0 isolated in V, or every neighborhood of 0 in V is uncountable. Complete (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Distinguished algebraic semantics for t -norm based fuzzy logics: Methods and algebraic equivalencies.Petr Cintula, Francesc Esteva, Joan Gispert, Lluís Godo, Franco Montagna & Carles Noguera - 2009 - Annals of Pure and Applied Logic 160 (1):53-81.
    This paper is a contribution to Mathematical fuzzy logic, in particular to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and Δ-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics–namely the class of algebras defined over the real unit (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Algebraizable Logics.W. J. Blok & Don Pigozzi - 2022 - Advanced Reasoning Forum.
    W. J. Blok and Don Pigozzi set out to try to answer the question of what it means for a logic to have algebraic semantics. In this seminal book they transformed the study of algebraic logic by giving a general framework for the study of logics by algebraic means. The Dutch mathematician W. J. Blok (1947-2003) received his doctorate from the University of Amsterdam in 1979 and was Professor of Mathematics at the University of Illinois, Chicago until his death in (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Residuated fuzzy logics with an involutive negation.Francesc Esteva, Lluís Godo, Petr Hájek & Mirko Navara - 2000 - Archive for Mathematical Logic 39 (2):103-124.
    Residuated fuzzy logic calculi are related to continuous t-norms, which are used as truth functions for conjunction, and their residua as truth functions for implication. In these logics, a negation is also definable from the implication and the truth constant $\overline{0}$ , namely $\neg \varphi$ is $\varphi \to \overline{0}$. However, this negation behaves quite differently depending on the t-norm. For a nilpotent t-norm (a t-norm which is isomorphic to Łukasiewicz t-norm), it turns out that $\neg$ is an involutive negation. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • A propositional calculus with denumerable matrix.Michael Dummett - 1959 - Journal of Symbolic Logic 24 (2):97-106.
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • Algebraic Completeness Results for Dummett's LC and Its Extensions.J. Michael Dunn & Robert K. Meyer - 1971 - Mathematical Logic Quarterly 17 (1):225-230.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Mathematical Fuzzy Logic – What It Can Learn from Mostowski and Rasiowa.Petr Hájek - 2006 - Studia Logica 84 (1):51-62.
    Important works of Mostowski and Rasiowa dealing with many-valued logic are analyzed from the point of view of contemporary mathematical fuzzy logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Sentences true in all constructive models.R. L. Vaught - 1960 - Journal of Symbolic Logic 25 (1):39-53.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On triangular norm based axiomatic extensions of the weak nilpotent minimum logic.Carles Noguera, Francesc Esteva & Joan Gispert - 2008 - Mathematical Logic Quarterly 54 (4):387-409.
    In this paper we carry out an algebraic investigation of the weak nilpotent minimum logic and its t-norm based axiomatic extensions. We consider the algebraic counterpart of WNM, the variety of WNM-algebras and prove that it is locally finite, so all its subvarieties are generated by finite chains. We give criteria to compare varieties generated by finite families of WNM-chains, in particular varieties generated by standard WNM-chains, or equivalently t-norm based axiomatic extensions of WNM, and we study their standard completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Completeness with respect to a chain and universal models in fuzzy logic.Franco Montagna - 2011 - Archive for Mathematical Logic 50 (1-2):161-183.
    In this paper we investigate fuzzy propositional and first order logics which are complete or strongly complete with respect to a single chain, and we relate this properties with the existence of a universal chain for the logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On witnessed models in fuzzy logic.Petr Hájek - 2007 - Mathematical Logic Quarterly 53 (1):66-77.
    Witnessed models of fuzzy predicate logic are models in which each quantified formula is witnessed, i.e. the truth value of a universally quantified formula is the minimum of the values of its instances and similarly for existential quantification. Systematic theory of known fuzzy logics endowed with this semantics is developed with special attention paid to problems of arithmetical complexity of sets of tautologies and of satisfiable formulas.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • First-order Nilpotent minimum logics: first steps.Matteo Bianchi - 2013 - Archive for Mathematical Logic 52 (3-4):295-316.
    Inspired by the work done by Baaz et al. (Ann Pure Appl Log 147(1–2): 23–47, 2007; Lecture Notes in Computer Science, vol 4790/2007, pp 77–91, 2007) for first-order Gödel logics, we investigate Nilpotent Minimum logic NM. We study decidability and reciprocal inclusion of various sets of first-order tautologies of some subalgebras of the standard Nilpotent Minimum algebra, establishing also a connection between the validity in an NM-chain of certain first-order formulas and its order type. Furthermore, we analyze axiomatizability, undecidability and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations