Switch to: Citations

Add references

You must login to add references.
  1. Causal Control: A Rationale for Causal Selection.Lauren N. Ross - 2015
    Causal selection has to do with the distinction we make between background conditions and “the” true cause or causes of some outcome of interest. A longstanding consensus in philosophy views causal selection as lacking any objective rationale and as guided, instead, by arbitrary, pragmatic, and non-scientific considerations. I argue against this position in the context of causal selection for disease traits. In this domain, causes are selected on the basis of the type of causal control they exhibit over a disease (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Biological regulation: controlling the system from within.Leonardo Bich, Matteo Mossio, Kepa Ruiz-Mirazo & Alvaro Moreno - 2016 - Biology and Philosophy 31 (2):237-265.
    Biological regulation is what allows an organism to handle the effects of a perturbation, modulating its own constitutive dynamics in response to particular changes in internal and external conditions. With the central focus of analysis on the case of minimal living systems, we argue that regulation consists in a specific form of second-order control, exerted over the core regime of production and maintenance of the components that actually put together the organism. The main argument is that regulation requires a distinctive (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Systems biology and the integration of mechanistic explanation and mathematical explanation.Ingo Brigandt - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):477-492.
    The paper discusses how systems biology is working toward complex accounts that integrate explanation in terms of mechanisms and explanation by mathematical models—which some philosophers have viewed as rival models of explanation. Systems biology is an integrative approach, and it strongly relies on mathematical modeling. Philosophical accounts of mechanisms capture integrative in the sense of multilevel and multifield explanations, yet accounts of mechanistic explanation have failed to address how a mathematical model could contribute to such explanations. I discuss how mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Biological Autonomy: A Philosophical and Theoretical Enquiry.Alvaro Moreno & Matteo Mossio - 2015 - Dordrecht: Springer. Edited by Matteo Mossio.
    Since Darwin, Biology has been framed on the idea of evolution by natural selection, which has profoundly influenced the scientific and philosophical comprehension of biological phenomena and of our place in Nature. This book argues that contemporary biology should progress towards and revolve around an even more fundamental idea, that of autonomy. Biological autonomy describes living organisms as organised systems, which are able to self-produce and self-maintain as integrated entities, to establish their own goals and norms, and to promote the (...)
    Download  
     
    Export citation  
     
    Bookmark   129 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1355 citations  
  • Mechanism, autonomy and biological explanation.Leonardo Bich & William Bechtel - 2021 - Biology and Philosophy 36 (6):1-27.
    The new mechanists and the autonomy approach both aim to account for how biological phenomena are explained. One identifies appeals to how components of a mechanism are organized so that their activities produce a phenomenon. The other directs attention towards the whole organism and focuses on how it achieves self-maintenance. This paper discusses challenges each confronts and how each could benefit from collaboration with the other: the new mechanistic framework can gain by taking into account what happens outside individual mechanisms, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Grounding cognition: heterarchical control mechanisms in biology.William Bechtel & Leonardo Bich - 2021 - Philosophical Transactions of the Royal Society B: Biological Sciences 376 (1820).
    We advance an account that grounds cognition, specifically decision-making, in an activity all organisms as autonomous systems must perform to keep themselves viable—controlling their production mechanisms. Production mechanisms, as we characterize them, perform activities such as procuring resources from their environment, putting these resources to use to construct and repair the organism's body and moving through the environment. Given the variable nature of the environment and the continual degradation of the organism, these production mechanisms must be regulated by control mechanisms (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Structural and organisational conditions for being a machine.Guglielmo Militello & Álvaro Moreno - 2018 - Biology and Philosophy 33 (5-6):35.
    Although the analogy between macroscopic machines and biological molecular devices plays an important role in the conceptual framework of both neo-mechanistic accounts and nanotechnology, it has recently been claimed that certain complex molecular devices cannot be considered machines since they are subject to physicochemical forces that are different from those of macroscopic machines. However, the structural and physicochemical conditions that allow both macroscopic machines and microscopic devices to work and perform new functions, through a combination of elemental functional parts, have (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Causal Concepts in Biology: How Pathways Differ from Mechanisms and Why It Matters.Lauren N. Ross - 2021 - British Journal for the Philosophy of Science 72 (1):131-158.
    In the last two decades few topics in philosophy of science have received as much attention as mechanistic explanation. A significant motivation for these accounts is that scientists frequently use the term “mechanism” in their explanations of biological phenomena. While scientists appeal to a variety of causal concepts in their explanations, many philosophers argue or assume that all of these concepts are well understood with the single notion of mechanism. This reveals a significant problem with mainstream mechanistic accounts– although philosophers (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The New Mechanical Philosophy.Stuart Glennan - 2017 - Oxford: Oxford University Press.
    This volume argues for a new image of science that understands both natural and social phenomena to be the product of mechanisms, casting the work of science as an effort to understand those mechanisms. Glennan offers an account of the nature of mechanisms and of the models used to represent them in physical, life, and social sciences.
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   562 citations  
  • On the Import of Constraints in Complex Dynamical Systems.Cliff Hooker - 2013 - Foundations of Science 18 (4):757-780.
    Complexity arises from interaction dynamics, but its forms are co-determined by the operative constraints within which the dynamics are expressed. The basic interaction dynamics underlying complex systems is mostly well understood. The formation and operation of constraints is often not, and oftener under appreciated. The attempt to reduce constraints to basic interaction fails in key cases. The overall aim of this paper is to highlight the key role played by constraints in shaping the field of complex systems. Following an introduction (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Analysing Network Models to Make Discoveries about Biological Mechanisms.William Bechtel - 2019 - British Journal for the Philosophy of Science 70 (2):459-484.
    Systems biology provides alternatives to the strategies to developing mechanistic explanations traditionally pursued in cell and molecular biology and much discussed in accounts of mechanistic explanation. Rather than starting by identifying a mechanism for a given phenomenon and decomposing it, systems biologists often start by developing cell-wide networks of detected connections between proteins or genes and construe clusters of highly interactive components as potential mechanisms. Using inference strategies such as ‘guilt-by-association’, researchers advance hypotheses about functions performed of these mechanisms. I (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Investigations.Stuart A. Kauffman - 2000 - Oxford University Press.
    A fascinating exploration of the very essence of life itself sheds new light on the order and evolution in complex life systems and defines and explains autonomous agents and work within the contexts of thermodynamics and information theory, setting the stage for a dramatic technological revolution. 50,000 first printing.
    Download  
     
    Export citation  
     
    Bookmark   225 citations  
  • Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science.William Bechtel & Adele Abrahamsen - 2010 - Studies in History and Philosophy of Science Part A 41 (3):321-333.
    Two widely accepted assumptions within cognitive science are that (1) the goal is to understand the mechanisms responsible for cognitive performances and (2) computational modeling is a major tool for understanding these mechanisms. The particular approaches to computational modeling adopted in cognitive science, moreover, have significantly affected the way in which cognitive mechanisms are understood. Unable to employ some of the more common methods for conducting research on mechanisms, cognitive scientists’ guiding ideas about mechanism have developed in conjunction with their (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Can mechanistic explanation be reconciled with scale-free constitution and dynamics?William Bechtel - 2015 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 53:84-93.
    Download  
     
    Export citation  
     
    Bookmark   34 citations